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Abstract

We consider the problem of space-time super-resolution
(ST-SR): increasing spatial resolution of video frames and
simultaneously interpolating frames to increase the frame
rate. Modern approaches handle these axes one at a time.
In contrast, our proposed model called STARnet super-
resolves jointly in space and time. This allows us to lever-
age mutually informative relationships between time and
space: higher resolution can provide more detailed infor-
mation about motion, and higher frame-rate can provide
better pixel alignment. The components of our model that
generate latent low- and high-resolution representations
during ST-SR can be used to finetune a specialized mech-
anism for just spatial or just temporal SR. Experimental re-
sults demonstrate that STARnet improves the performances
of space-time, spatial, and temporal video SR by substantial
margins on publicly available datasets.

1. Introduction

The goal of Space-Time Super-Resolution (ST-SR),
originally proposed by [49], is to transform a low spa-
tial resolution video with a low frame-rate to a video with
higher spatial and temporal resolutions. However, exist-
ing SR methods treat spatial and temporal upsampling in-
dependently. Space SR (S-SR) with multiple input frames,
(i.e., multi-image SR [11, 12] and video SR [22, 33, 7, 46,
17]), aims to super-resolve spatial low-resolution (S-LR)
frames to spatial high-resolution (S-HR) frames by spa-
tially aligning similar frames (Fig. 1 (a)). Time SR (T-
SR) aims to increase the frame-rate of input frames from
temporal low-resolution (T-LR) frames to temporal high-
resolution (T-HR) frames by temporally interpolating in-
between frames [45, 36, 35, 42, 3, 41] (Fig. 1 (b)).

While few ST-SR methods are presented [49, 50, 47, 40,
32], these methods are not learning-based method and re-
quire each input video to be long enough to extract mean-
ingful space-time patterns. [48] proposed ST-SR based on
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a deep network. However, this method fails to fully exploit
the advantages of ST-SR schema because it relies only on
LR for interpolation.

On the other hand, one can perform ST-SR by using
any learning-based S-SR and T-SR alternately and inde-
pendently. For example, in-between frames are constructed
on S-LR, and then their SR frames are produced by S-SR;
Fig. 1 (c). The other way around is to spatially upsample in-
put frames by S-SR, and then to perform T-SR to construct
their in-between frames; Fig. 1 (d).

However, space and time are obviously related. This
relation allows us to jointly employ spatial and temporal
representations for solving vision tasks on both human [20,
21, 8] and machine perceptions [39, 62, 6, 55, 17, 57, 31].
Intuitively, more accurate motions can be represented on
a higher spatial representation and, the other way around,
a higher temporal representation (i.e., more frames all of
which are similar in appearance) can be used to accu-
rately extract more spatial contexts captured in the tempo-
ral frames as done in multi-image SR and video SR. This
intuition is also supported by various joint learning prob-
lems [18, 15, 61, 1, 60, 56, 29], which are proven to improve
learning efficiency and prediction accuracy.

In order to utilize the complementary nature of space and
time, we propose the Space-Time-Aware multiResolution
Network, called STARnet. STARnet explicitly incorporates
spatial and temporal representations for augmenting S-SR
and T-SR mutually in LR and HR spaces by presenting di-
rect connections from LR to HR for ST-SR, indicated as
purple arrows in Fig. 1 (e). This network also provides the
extensibility where the same network can be further fine-
tuned for either of ST-SR, S-SR, or T-SR. As shown in
Fig. 2, STAR-based finetuned models perform better than
state-of-the-arts [58, 14, 3, 17].

The main contributions of this paper are as follows:
1) The novel learning-based ST-SR method, which trains a
deep network end-to-end to jointly learn spatial and tem-
poral contexts, leading to what we call Space-Time-Aware
multiResolution Networks (STARnet). This approach out-
performs the combinations of S-SR and T-SR methods.
2) Joint learning on multiple resolutions to estimate both
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(a) Video SR (S-SR) (b) Video Interpolation (T-SR)

(c) Time-to-Space SR (d) Space-to-Time SR (e) Our STARnet

Figure 1. Comparison of SR methods. White and gray rectangles indicate input and output frames, respectively. Small and large rectangles
indicate S-LR and S-HR frames, respectively. We omit the feature extraction steps from images to features. (a) and (b) are original S-SR
and T-SR methods, respectively. For ST-SR, (c) performs T-SR to produce in-between frames then enlarge the frames using S-SR (e.g.,
DAIN [3]→RBPN [17]). The other way around, (d) performs S-SR then the SR frames are used to produce in-between frames using
T-SR (e.g., RBPN [17]→DAIN [3]). Our STARnet (e) jointly optimizes all tasks (S-SR, T-SR, and ST-SR) for augmenting space and
time features mutually in multiple resolutions. The purple arrows present direct connections from LR to HR for ST-SR. In addition to
upsampling, down-sampling is used to transform S-HR features back to S-LR features for the mutual connection in multiple resolutions.
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Figure 2. Comparison on ST-SR, T-SR, and S-SR (S-SR: 4× and
T-SR: 2×). Red arrows show artifacts and blur produced by other
approaches while STARnet (ours) can construct better images.

large and subtle motions observed in videos. Performing T-
SR on S-HR frames has difficulties in estimating large mo-
tions, while subtle motions can be difficult to interpolate on
S-LR frames. Our joint learning solves both problems by
presenting rich multi-scale features via direct lateral con-
nections between multiple resolutions.

3) A novel view of S-SR and T-SR that are superior to di-
rect S-SR and T-SR. In contrast to the direct S-SR and T-
SR approaches, our S-SR and T-SR models are acquired by
finetuning STAR. This finetuning from STAR allows the S-
SR and T-SR models to be augmented by ST-SR learning;
(1) S-SR is augmented by interpolated frames as well as by
input frames and (2) T-SR is augmented by subtle motions
observed in S-HR as well as large motion observed in S-LR.

2. Related Work
Space SR. Deep SR [9] is extended by better up-sampling
layers [51], residual learning [26, 54], back-projection [14,
16], recursive layers [27], and progressive upsampling [30].
In video SR, temporal information is retained by frame con-
catenation [7, 24] and recurrent networks [22, 46, 17].
Time SR. T-SR, or video interpolation, aims to synthesize
in-between frames [36, 45, 23, 35, 42, 41, 3, 43, 37, 59].
The previous methods use a flow image as a motion rep-
resentation [23, 41, 3, 58, 59]. However, the flow image
suffers from blur and large motions. DAIN [3] employed
monocular depth estimation in order to support robust flow
estimation. As another approach, by spatially downscaling
input S-HR frames, large and subtle motions can be ex-
tracted in downscaled S-LR and input S-HR frames, respec-
tively [37, 43]. While these methods [37, 43] downscale
input S-HR frames for T-SR with joint training of multiple
spatial resolutions, STARnet upscales input S-LR frames
both in input and interpolated frames for ST-SR with joint
training of multiple spatial and temporal resolutions.
Space-Time SR. The first work of ST-SR [49, 50] solved
huge linear equations, then created a vector containing all
the space-time measurement from all LR frames. Later,
[47] presented ST-SR from a single video recording under
the assumption of spatial and temporal recurrences. These
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previous work [49, 50, 47, 32, 40] have several drawbacks,
such as dependencies between the equations, its sensitiv-
ity to some parameters, and required longer videos to ex-
tract meaningful space-time patterns. [48] proposed STSR
method to learn LR-HR non-linear mapping. However, it
did not investigate the effectiveness of multiple spatial res-
olutions to improve the ST-SR results. Furthermore, it is
also evaluated on a limited test set.

Another approach is to combine S-SR and T-SR, as
shown in Fig. 1 (c) and (d). However, this approach treats
each context, spatial and temporal, independently. ST-SR
has not been investigated thoroughly using joint learning.

3. Space-Time-Aware multiResolution
3.1. Formulation

Given two LR frames (I lt and I lt+1) with size of (M l ×
N l), ST-SR obtains space-time SR frames (Isrt , I

sr
t+n, I

sr
t+1)

with size of (Mh ×Nh) where n ∈ [0, 1] and M l < Mh

and N l < Nh. The goal of ST-SR is to produce {Isrt }T+t=0

from {I l1}Tt=0, where T+ indicates the higher number of
frames than T . In addition, STARnet computes an in-
between S-LR frame (I lt+n) from (I lt and I lt+1) for joint
learning on LR and HR in space and time. Bidirectional
dense motion flow maps, Ft→t+1 and Ft+1→t (describing a
2D vector per pixel), between I lt and I lt+1 are precomputed.
Let Lt ∈ RM l×N l×cl and Ht ∈ RMh×Nh×ch represent
the S-LR and S-HR feature-maps on time t, respectively,
where cl and ch are the number of channels.

STARnet’s operation is divided into three stages: initial-
ization (stage 1), refinement (stage 2), and reconstruction
(stage 3); Fig. 3. We train the entire network end-to-end.
Initialization (Stage 1) achieves joint learning of S-SR, T-
SR, and ST-SR on LR and HR where T-SR and ST-SR are
performed in the same subnetwork indicated by “ST-SR.”
This stage takes four inputs: two RGB frames (I lt, I

l
t+1) and

their bidirectional flow images (Ft→t+1, Ft+1→t). Stage 1 is
defined as follows:

S-SR: Ht = NetS(I
l
t, I

l
t+1, Ft+1→t; θs)

Ht+1 = NetS(I
l
t+1, I

l
t, Ft→t+1; θs) (1)

Lt = NetD(Ht; θd)

Lt+1 = NetD(Ht+1; θd) (2)
Motion: M = NetM (Ft→t+1, Ft+1→t; θm) (3)
ST-SR: Ht+n, Lt+n = NetST (Ht, Ht+1, Lt, Lt+1,M ; θst)

(4)

In S-SR, S-HR feature-maps (Ht and Ht+1) are pro-
duced by NetS , as expressed in Eq. (1). As with other
video SR methods, this S-SR is performed with sequen-
tial frames (I lt and I lt+1) and their flow image (Ft+1→t or
Ft→t+1). θ denotes a set of weights in each network. Fol-
lowing up- and down-samplings for enhancing features for

SR [14, 17], Ht and Ht+1 are downscaled by NetD for up-
dating Lt and Lt+1, respectively, as expressed in Eq. (2).
NetM produces a motion representation (M ) which is cal-
culated from the bidirectional optical flows; Eq. (3). The
output of NetM is flow feature maps, learned by a CNN.
While it is hard to interpret these features directly, they
are intended to help spatial alignment between Ft→t+1 and
Ft+1→t.

Finally, with the concatenation of all these features, ST-
SR in the feature space is performed by NetST ; Eq. (4).
NetST achieves T-SR as well as ST-SR which are incorpo-
rated on LR and HR, shown as blue and purple arrows in
Fig. 1 (e). The outputs of stage 1 are HR and LR feature-
maps (Ht+n and Lt+n) for an in-between frame.

In this stage, STARnet maintains cycle consistencies (1)
between S-HR and S-LR and (2) between t and t+1, while
such a cycle consistency is demonstrated for general pur-
poses [64, 13, 63],
Refinement (Stage 2) further maintains the cycle consisten-
cies for refining the feature-maps again. While raw optical
flows (Ft+1→t and Ft→t+1) are used in Eq. (1) of Stage 1,
the motion feature (M ) is used in the first equations of Eqs
(5), (7), (9), and (10) in Stage 2. This difference allows us
to produce more reliable feature-maps. For further refine-
ment, residual features are extracted in Eqs. (6), (8), and
(11), as proposed in RBPN [17] for precise spatial align-
ment of temporal features.

Finally, Stage 2 is defined as follows:

t:Hb
t = NetB(Lt+n, Lt,M ; θb)

Lb
t = NetD(Hb

t ; θd) (5)

Ĥt = Ht+ReLU(Ht-H
b
t )

L̂t = Lt+ReLU(Lt-L
b
t) (6)

t+1:Hf
t+1 = NetF (Lt+n, Lt+1,M ; θf )

Lf
t+1 = NetD(Hf

t+1; θd) (7)

Ĥt+1 = Ht+1+ReLU(Ht+1-H
f
t+1)

L̂t+1 = Lt+1+ReLU(Lt+1-L
f
t+1) (8)

t+n:Hf
t+n = NetF (L̂t, Lt+n,M ; θf )

Lf
t+n = NetD(Hf

t+n; θd) (9)

Hb
t+n = NetB(L̂t+1, Lt+n,M ; θb)

Lb
t+n = NetD(Hb

t+n; θd) (10)

Ĥt+n = Ht+n+ReLU(Ht+n-H
f
t+n)+ReLU(Ht+n-H

b
t+n)

L̂t+n = Lt+n+ReLU(Lt+n-L
f
t+n)+ReLU(Lt+n-L

b
t+n)

(11)

Reconstruction (Stage 3) transforms four feature-maps
(Ĥt, Ĥt+n, Ĥt+1, and L̂t+n) to their corresponding images
(Isrt , Isrt+n, Isrt+1, and I lt+n) by using only one conv layer
Netrec; for example, Isrt = Netrec(Ĥt; θrec).
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Figure 3. Overview of Space-Time-Aware multiResolution Network (STARnet). First, S-SR produces a pair of S-LR and S-HR feature-
maps (Lt, Ht, Lt+1, and Ht+1) at each time. Motion representation (M ) is calculated by Motion network from bidirectional optical flow
images (Ft→t+1 and Ft+1→t). With these features, ST-SR produces the feature-maps of the in-between frame (Lt+n and Ht+n). Finally,
we reconstruct all outputs of STARnet (Isrt , Isrt+n, Isrt+1, and Ilt+n) by concatenating all features-maps on LR and HR in space and time.

(a) STAR (b) STAR-ST

(c) STAR-S (d) STAR-T

Figure 4. Variants of STARnet train on different training objec-
tive for specific tasks. Small and large rectangles indicate low-
and high-resolution frames, respectively. White and gray rectan-
gles indicate input and output frames, respectively. Dotted arrows
indicated that this computation is not directly optimized.

3.2. Training Objectives

The reconstructed images of STARnet (Isrt , Isrt+n, Isrt+1,
and I lt+n) are compared with their ground-truth images by
loss functions in a training phase. For this training, (1) S-
HR images as the ground-truth images are downscaled to S-
LR images and (2) T-HR frames as the ground-truth frames
are skimmed to T-LR frames. The loss functions are divided
into the following three types:

Space loss is evaluated on Isrt and Isrt+1.

Time loss is evaluated only on I lt+n.

Space-Time loss is evaluated only on Isrt+n.

Our framework provides the following four variants,
which are trained with different training objectives.
STAR is trained using all of the aforementioned three losses
on LR and HR in space and time. STAR produces {Isrt }T+t=0

and {I lt}T+t=0 simultaneously as in Fig. 4 (a).
STAR-ST is a fine-tuned model from STAR using Space
and Space-Time losses on HR in space and time. The net-
work is optimized on the space-time super-resolved frames
{Isrt }T+t=0 as in Fig. 4 (b).
STAR-S is a fine-tuned model from STAR using Space loss
on S-HR, optimizing only {Isrt }Tt=0 as in Fig. 4 (c).
STAR-T is a fine-tuned model from STAR using Time loss
on T-HR as in Fig. 4 (d). STAR-T can be trained on two
different regimes, S-LR and S-HR. While STAR-THR uses
the original frames (S-HR) as input frames, STAR-TLR uses
the downscaled frames (S-LR) as input frames.

3.3. Loss Functions

Each of Space, Time, and Space-Time losses consists of
two types of loss functions, L1 and Lvgg. L1 is the loss per-
pixel between a predicted super-resolved frame (Isrt ) and its
ground-truth HR frame (Iht ) where t ∈ [T ].

L1 =

T∑
t=0

||Iht -Isrt ||1 (12)

Lvgg is calculated in the feature space using a pretrained
VGG19 network [52]. For computing Lvgg, both Ih and
Isr are mapped into the feature space by differentiable func-
tions fm from the VGG multiple max-pool layer (m = 5).

Lvgg =

T∑
t=0

||fm(Iht )-fm(Isrt )||22 (13)

L1 is for fulfilling standard image quality assessment
metrics such as PSNR and validated for SR [42, 5], while
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Lvgg improves visual perception [25, 10]. Based on this
fact, only L1 or a weighted sum of L1 and Lvgg is utilized
for training STARnet depending on the purpose.

3.4. Flow Refinement

As mentioned in Section 3.1, we use flow images pre-
computed by [34]. As revealed in many video interpolation
papers [36, 45, 23, 35, 42, 41, 3, 43, 37, 59], large motions
between t and t+1 make video interpolation difficult. Flow
noise due to such large motions has a bad effect on the inter-
polation results. While STARnet suppresses this bad effect
by T-SR not only in S-HR but also in S-LR, it is difficult
to fully resolve this problem. For further improvement, we
propose a simple solution to refine or denoise the flow im-
ages, called a Flow Refinement (FR) module.

Let Ft→t+1 and Ft+1→t are flow images between frames
I lt and I lt+1 on forward and backward motions, respectively.
During training, Ft→t+n can be calculated from an in-
put frame at t to the ground truth (i.e., from I lt to I lt+n).
Netflow is a U-Net which defines as follows.

FR: F̂t→t+1 = Netflow(Ft→t+1, It, It+1; θflow)

F̂t+1→t = Netflow(Ft+1→t, It+1, It; θflow)
(14)

To reduce the noise, we propose the following flow re-
finement loss.

Lflow = ||F̂t→t+1-(Ft→t+n+Ft+n→t+1)||22
+||F̂t+1→t-(Ft+1→t+n+Ft+n→t)||22

(15)

With Lflow, the loss functions for training STARnet are
defined as follows:

Lr = w1 ∗ L1+w2 ∗ Lflow (16)
Lf = Lr+w3 ∗ Lvgg (17)

4. Experimental Results
In all experiments, we focus on 4× SR factor and n =

0.5. Isrt and Isrt+ denote the SR frames of input frames and
in-between frames, respectively.

4.1. Implementation Details

Stage 1. For NetS and NetD, we use DBPN [14] or
RBPN [17] that have up- and down-sampling layers to si-
multaneously produce a pair of S-LR and S-HR features
with ch=64 and cl=128. NetM is constructed with two
residual blocks where each block consists of two conv lay-
ers with 3 × 3 with stride = 1 and pad by 1. NetST has
five residual blocks followed by deconv layers for upsam-
pling.
Stage 2. Both NetF and NetB are constructed using five
residual blocks and deconv layers.
Train Dataset. We use the triplet training set in
Vimeo90K [58] for training. This dataset has 51,313 triplets

from 14,777 video clips with a fixed resolution, 448× 256.
During training, we apply augmentation, such as rotation,
flipping, and random cropping. The original images are re-
garded as S-HR and downscaled to 112 × 64 S-LR frames
(4× smaller than the originals) with Bicubic interpolation.
Test Dataset and Metrics. We evaluate our method on
several test sets. The test set of Vimeo90K [58] consists
of 3,782 triplets with the original resolution of 448 × 256
pixels. While UCF101 [53] is developed for action recog-
nition, it is also used for evaluating T-SR methods. This
test set consists of 379 triplets with the original resolution
of 256 × 256 pixels. Middlebury [2] has the original reso-
lution of 640 × 480 pixels. We evaluate PSNR, SSIM, and
interpolation error (IE) on the test sets.
Training Strategy. The batch size is 10 with 112× 64 pix-
els (S-LR scale). The learning rate is initialized to 1e − 4
for all layers and decreased by a factor of 10 on every 30
epochs for total 70 epochs. For each finetuned model, we
use another 20 epochs with learning rate 1e − 4 and de-
creased by a factor of 10 on every 10 epochs. We initial-
ize the weights based on [19]. For optimization, we used
AdaMax [28] with momentum to 0.9. All experiments were
conducted using Python 3.5.2 and PyTorch 1.0 on NVIDIA
Tesla V100 GPUs. For the loss setting, we use w1: 1, w2:
0.1, and w3: 0.1.

4.2. Ablation Studies

Here, we evaluate STARnet without T-SR paths (blue ar-
rows in Fig. 1 (e)) in order to clarify the effectiveness our
core contribution (i.e., joint learning in time and space on
multiple resolutions) with a simplified network using direct
ST-SR paths (purple arrows). The test set of Vimeo90K [58]
is used.
Basic components. We evaluate the basic components on
STARnet. In the first experiment, we remove the refinement
part (i.e., Stage 2), leaving only the initialization part. Sec-
ond, we omit input flow images and NetM , so no motion
context is used (STAR w/o Flow). Third, the FR module
is removed. Finally, the full model is evaluated. The re-
sults of these four models are shown in “STAR w/o Stage
2,” “STAR w/o Flow,” “STAR w/o FR,” and “STAR” in Ta-
ble 1. Compared with the full model, the PSNR of STAR
w/o Stage 2 decreases to 0.36dB and 1.0dB on Isrt+ and Isrt ,
respectively. The flow information can also improve the
PSNR 0.28dB and 0.43dB on Isrt+ and Isrt , respectively.

While FR is also useful, the quantitative improvement
by FR is not substantial compared with those of the other
two components. The examples of Isrt+ are shown in Fig. 5
where flow images are computed only by I lt and I lt+1, only
by I lt and I lt+1 and refined by FR, and by I lt+ (i.e., GT in-
between frame) in addition to I lt and I lt+1 in (a), (b), and
(c), respectively. In Fig. 5, the visual improvement by FR is
substantial. This result reveals that (1) erroneous flows are
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Isrt Isrt+
Method PSNR SSIM PSNR SSIM
STAR w/o Stage 2 30.920 0.921 30.002 0.917
STAR w/o Flow 31.489 0.928 30.086 0.918
STAR w/o FR 31.601 0.929 30.229 0.920
STAR 31.920 0.933 30.365 0.923

Table 1. Baseline comparison of STAR with DBPN [16] and Lf .
Red in all tables indicates the best performance.

Image 1 Image 2

PSNR: 22.68dB PSNR: 23.48dB PSNR: 24.26dB PSNR: 18.59dB PSNR: 19.19dB PSNR: 20.29dB

(a) w/o FR (b) w/ FR (c) GT Flow (a) w/o FR (b) w/ FR (c) GT Flow

Figure 5. Visual analysis of Isrt+ with and w/o FR. (a) Flows are
computed by Ilt and Ilt+1. (b) Flows are computed by Ilt and Ilt+1

and refined by FR. (c) Flows are computed by Ilt+ (i.e., GT in-
between frame) in addition to Ilt and Ilt+1

Isr
t Isr

t+ Il
t+

Method PSNR SSIM PSNR SSIM PSNR SSIM
STAR 31.601 0.929 30.229 0.920 39.014 0.990
STAR-ST 31.883 0.933 30.350 0.928 NA NA
STAR-S 32.026 0.935 NA NA NA NA
STAR-T NA NA NA NA 39.028 0.990

Table 2. Analysis on different training objectives using STARnet
with DBPN [16] and Lf .

Isr
t Isr

t+
Loss PSNR SSIM NIQE [38] PSNR SSIM NIQE [38]
Lf 32.153 0.936 6.288 30.545 0.925 6.289
Lr 32.349 0.938 6.905 30.704 0.928 6.942

Table 3. Analysis on two loss functions using STAR-ST with
RBPN. Higher PSNR and SSIM indicate better results, while a
lower NIQE indicates a better perceptual index.

critical for generating Isrt+ (i.e., for ST-SR) and (2) FR can
rectify the flow image significantly on several images.
Training Objectives. Table 2 shows that finetuning STAR
to STAR-ST, STAR-S, and STAR-T is beneficial for im-
proving ST-SR, S-SR, and T-SR, respectively.
Loss Functions. We investigate optimizability of two
losses, Eqs. (16) and (17), as shown in Table 3. The results
show that Lr increases the PSNR by 0.19dB and 0.16dB on
Isrt and Isrt+ , respectively. However, Lf has a better NIQE
score, which shows that this loss perceives better human
perception. In what follows, Lr is used.
S-SR module. We compare two S-SR methods, DBPN [16]
for single-image SR and RBPN [17] for video SR, as the S-
SR module in Stage 1; Table 4. RBPN can work better in
all cases.

Isrt Isrt+
Method PSNR SSIM PSNR SSIM
STAR with DBPN [16] 32.160 0.936 30.540 0.925
STAR with RBPN [17] 32.349 0.938 30.704 0.928

Table 4. Analysis on the S-SR module using STAR-ST and Lr .
Isrt Isrt+

Method PSNR SSIM PSNR SSIM
(1) STAR-ST→ STAR-ST 33.007 0.941 27.186 0.893
(2) STAR-ST→ STAR-T 34.146 0.950 27.640 0.901

Table 5. Analysis on larger scale T-SR (4×) on the Vimeo90K
setuplet test set with Lr .

Isrt Isrt+
Method PSNR SSIM PSNR SSIM
(1) Only ST-SR 32.349 0.938 30.704 0.928
(2) ST-SR+T-SRS−HR 32.398 0.939 30.712 0.928
(3) ST-SR+T-SRS−LR 32.421 0.939 30.760 0.928
(4) Full 32.547 0.940 30.830 0.929

Table 6. Analysis on ST-SR jointly trained with T-SR with
RBPN [17] and Lr . Models are optimized for STAR-ST w/ FR.

Larger scale T-SR. The performance on a larger scale T-SR
is investigated. While the S-SR factor is the same with that
in other experiments (i.e., 4×), the frame-rate is upscaled to
4×. We compare two upscaling paths: (1) STAR-ST (2×
S-SR and 2× T-SR)→ STAR-ST (2× S-SR and 2× T-SR)
(2) STAR-ST (4× S-SR and 2× T-SR)→ STAR-T (2× T-
SR). For training 4× T-SR, the training set of the Vimeo90K
setuplet, where each sequence has 7 frames, is used. Then,
the 1st and 5th frames in the Vimeo90K setuplet test set are
used as input frames for evaluation. As shown in in Table 5,
the second path is better. This result may suggest that a
higher spatial resolution provides better results on T-SR.
T-SR paths on S-HR and S-LR domains. We analyze the
effectiveness of T-SR on multiple spatial resolutions (blue
arrows in Fig. 1 (e)) as well as ST-SR (purple arrows in
Fig. 1 (e)). Table 6 shows the results of the following four
experiments. In (1), we remove all T-SR modules (blue ar-
rows). In (2), T-SR on S-HR is incorporated with ST-SR
module. In (3), T-SR on S-LR is incorporated with ST-SR
module. In (4), all modules are used as shown in Fig. 1 (e).
In these implementations, T-SR modules can be removed
by modifying NetST in Eq. (4) so that it contains only
ST-SR, ST-SR+T-SRS−HR, ST-SR+T-SRS−LR, and all of
them for (1), (2), (3), and (4), respectively. It confirms that
joint training of ST-SR and T-SR improves the performance.
Both S-HR and S-LR resolutions improve the performance
compared with only ST-SR, while the best results are ob-
tained by the full STAR model.

4.3. Comparisons with State-of-the-art

The following results are obtained by the full STAR
model, which is evaluated as the best in Table 6.
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UCF101 [53] Vimeo90K [58] Middlebury (Other) [2]
Method PSNR SSIM NIQE PSNR SSIM NIQE PSNR SSIM NIQE
ToFlow [58]→ DBPN [16] 27.228 0.885 9.123 28.821 0.897 7.758 24.984 0.790 6.473
DBPN [16]→ ToFlow [58] 28.112 0.902 8.630 29.867 0.915 7.120 26.012 0.808 5.801
DBPN [16]→ DAIN [3] 28.175 0.902 8.755 30.021 0.918 7.223 26.268 0.809 5.869
DBPN-MI→ DAIN [3] 28.578 0.916 8.922 30.286 0.923 7.218 26.447 0.815 5.702
DAIN [3]→ RBPN [17] 27.631 0.909 8.932 29.422 0.916 7.253 25.744 0.811 5.814
RBPN [17]→ DAIN [3] 28.729 0.919 8.769 30.455 0.926 7.081 26.766 0.821 5.522
*RBPN [17]→ DAIN [3] 28.856 0.920 8.799 30.623 0.927 7.183 26.923 0.823 5.444
STAR-Lf 28.829 0.920 7.875 30.608 0.926 6.251 26.881 0.824 4.579
STAR-ST-Lf 28.806 0.920 7.868 30.714 0.927 6.470 27.020 0.826 4.802
STAR-ST-Lr 29.111 0.924 8.787 30.830 0.929 7.154 27.115 0.827 5.423

Table 7. Comparison on ST-SR (Isrt+ ) using Lr . α→ β indicates the output of α is the input of β. Red indicates the best and blue indicates
the second best performance in all tables in Section 4.3. * indicates a joint learning of RBPN and DAIN methods to perform ST-SR.

(a) (b) (c) (d) (d)
DBPN [16]→ToFlow [58] DAIN [3]→RBPN [17] RBPN [17]→DAIN [3] STAR-ST GT

Figure 6. Visual results on ST-SR (Isrt+ ). Red arrows here and in the other figures indicates the highlighted area.

UCF101 Vimeo90K
Method PSNR SSIM PSNR SSIM
Bicubic 27.217 0.887 28.134 0.878
DBPN [16] 29.828 0.913 31.505 0.927
DBPN-MI 30.666 0.934 31.835 0.933
RBPN [17] 30.969 0.938 32.154 0.936
STAR-ST 31.532 0.942 32.547 0.940
STAR-S 31.604 0.943 32.702 0.941

Table 8. Comparison on S-SR (Isrt ) using Lr .

ST-SR. As discussed in Section 2, older ST-SR meth-
ods [49, 50, 47, 32, 40] cannot be applied to videos in the
Vimeo90K dataset. We can combine more modern S-SR
and T-SR methods to perform ST-SR. We use DBPN [16]

and RBPN [17] as S-SR. For T-SR, we choose ToFlow [58]
and DAIN [3]. In Table 7, we present the results of ST-SR
obtained by six combinations of these methods.

It is found that S-SR→T-SR performs better than T-
SR→S-SR. The margin is up to 1dB on Vimeo90K, show-
ing that the performance of previous T-SRs significantly
drops on LR images. Even STAR is better than the combi-
nation of state-of-the-arts (RBPN [17]→DAIN [3]), while
the best result is achieved by STAR-ST, which is the fine-
tuned model from STAR. STAR-ST has a better perfor-
mance around 0.38dB than RBPN [17]→DAIN [3] on
Vimeo90K test set.

We can also present ST-SR as a joint learning of
RBPN [17] and DAIN [3], indicated as (*). It shows that
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UCF101 [53] Vimeo90K [58] Middlebury [2]
Other *Eval

Method PSNR SSIM PSNR SSIM IE IE
SPyNet [44] 33.67 0.963 31.95 0.960 2.49 -
EpicFlow [45] 33.71 0.963 32.02 0.962 2.47 -
MIND [36] 33.93 0.966 33.50 0.943 3.35 -
DVF [35] 34.12 0.963 31.54 0.946 7.75 -
ToFlow [58] 34.58 0.967 33.73 0.968 2.51 5.49
SepConv-Lf [42] 34.69 0.965 33.45 0.967 2.44 -
SepConv-L1 [42] 34.78 0.967 33.79 0.970 2.27 5.61
MEMC-Net [4] 34.96 0.968 34.29 0.974 2.12 4.99
DAIN [3] 34.99 0.968 34.71 0.976 2.04 4.86
STAR 34.78 0.964 33.11 0.957 2.41 -
STAR-TLR 34.80 0.964 33.19 0.958 2.36 -
STAR-THR 35.07 0.967 35.11 0.976 1.95 4.70

Table 9. Comparison on T-SR on the original resolution. SSIM
is almost saturated especially on UCF101, so PSNR is a better
measure here. *Results are taken from Middlebury dashboard.

Methods ToFlow [58] DAIN [3] STAR STAR-THR STAR-TLR
PSNR 36.04 36.69 39.13 38.60 39.30
SSIM 0.984 0.986 0.991 0.990 0.991

Table 10. Comparison of T-SR on L-SR (Ilt+) with Vimeo90K [58].

(a) (b) (c) (d)
ToFlow [58] DAIN [3] STAR-T GT

Figure 7. Visual results on T-SR on the original resolution.

joint learning is effective to improve this combination as
well as STAR. However, STAR, which leverages direct con-
nections for ST-SR (i.e., purple arrows in Fig. 1 (e)) and
joint learning in space and time, shows the best perfor-
mance. Visual results shown in Fig. 6 demonstrate that
STAR-ST produces sharper images than others.
S-SR. The results on S-SR are shown in Table 8. Our
methods are compared with DBPN [16], DBPN-MI, and
RBPN [17]. DBPN is a single image SR method. A Multi-
Image extension of DBPN (DBPN-MI) uses DBPN with a
temporal concatenation of RGB and optical flow images.

DBPN-MI and RBPN have the same input regimes using
sequential frames and optical flow images.

It shows that multiple frames are able to improve the
performance of DBPN for around 0.3dB on Vimeo90K.
RBPN successfully leverages temporal connections of se-
quential frames for performance improvement compared
with DBPN and DBPN-MI. As expected, STAR-S is the
best, which is also better than STAR-ST. It can improve the
PSNR by 1.19dB dB, 0.87dB, and 0.55dB compared with
DBPN [16], DBPN-MI, and RBPN [17], respectively, on
Vimeo90K test set.
T-SR. Our method is compared with eight state-of-the-art
T-SR methods: SPyNet [44], EpicFlow [45], MIND [36],
DVF [35], ToFlow [58], SepConv [42], MEMC-Net [4], and
DAIN [3]. Input frames are the original size of the test set
without downscaling. As shown in Table 9, STAR-THR is
comparable with the state-of-the-art T-SR methods.

The visual results are shown in Fig. 7. We can see that
STAR produces better interpolation on subtle and large mo-
tions, and also sharper textures. DAIN [3] and ToFlow [58]
tend to produce blur images on subtle and large motion ar-
eas as shown by the red arrows.

We also investigate the performance on S-LR. There are
different motion magnitudes between S-HR and S-LR. Nat-
urally, when the frames are downscaled, the magnitude of
pixel displacements is reduced as well. Therefore, each spa-
tial resolution has a different access to the motion variance.
The evaluation on S-LR images focuses on subtle motions,
while S-HR images focus on large motions. Table 9 shows
that STAR-THR is superior to STAR-TLR and other methods
on S-HR (original size). Likewise, STAR-TLR is superior
than STAR-THR on S-LR (original frames are downscaled
↓ with Bicubic) as shown in Table 10. It shows that if we
finetune the network on the same domain, it can increase
the performance. Furthermore, we can see that STAR-TLR

is much superior than ToFlow and DAIN.

5. Conclusion

We proposed a novel approach to space-time super-
resolution (ST-SR) using a deep network called Space-
Time-Aware multiResolution Network (STARnet). The net-
work super-resolves jointly in space and time. We show
that a higher resolution presents detailed motions, while a
higher frame-rate provides better pixel alignment. Further-
more, we demonstrate a special mechanism to improve the
performance for just S-SR and T-SR. We conclude that the
integration of spatial and temporal contexts is able to im-
prove the performance of S-SR, T-SR, and ST-SR by sub-
stantial margin on publicly available datasets.
This work was supported by JSPS KAKENHI Grant Num-
ber 19K12129.
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