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Task-Driven Super Resolution:
Object Detection in Low-resolution Images
Muhammad Haris, Greg Shakhnarovich, Member, IEEE, and Norimichi Ukita, Member, IEEE

Abstract—We consider how image super-resolution (SR) can contribute to an object detection task in low-resolution images.
Intuitively, SR gives a positive impact on the object detection task. While several previous works demonstrated that this intuition is
correct, SR and detector are optimized independently in these works. This paper proposes a novel framework to train a deep neural
network where the SR sub-network explicitly incorporates a detection loss in its training objective, via a tradeoff with a traditional
detection loss. This end-to-end training procedure allows us to train SR preprocessing for any differentiable detector. We demonstrate
extensive experiments that show our task-driven SR consistently and significantly improves the accuracy of an object detector on
low-resolution images from COCO and PASCAL VOC data set for a variety of conditions and scaling factors.

Index Terms—super-resolution, object detection, end-to-end learning, task network, machine perception, joint optimization
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1 INTRODUCTION

Image Super-Resolution (SR) belongs to image restoration and
enhancement (e.g., denoising and deblurring) algorithms, widely
studied in computer vision and graphics. In both communities,
the goal is to reconstruct an image from a degenerated version
as accurately as possible. The quality of the reconstructed image
is evaluated by pixel-based quantitative metrics such as PSNR
(peak signal-to-noise ratio) and SSIM (structure similarity) [1].
Recently-proposed perceptual quality [2], [3], [4] can also be
employed for evaluation as well as for optimizing the reconstruc-
tion model. Relationships between the pixel-based and perceptual
quality metrics have been investigated in the literature [5], [6] in
order to harmonize these two kinds of metrics. Ultimately, the goal
of SR is still to restore an image as well as possible in accordance
with criteria in human visual perception.

The connection between SR, and other image restoration tools,
and visual recognition is that despite continuing advances in
visual recognition, it remains vulnerable to a wide range of image
degradation, including low resolution and blur [7], [8]. Image
restoration such as SR can serve as an input enhancement step
to alleviate this vulnerability. For example, accuracy of many
recognition tasks can be improved by deblurring [9], [10], [11],
[12] or denoising [13]. SR has been also shown to be effective for
such preprocessing for several recognition tasks [14], [15], [16],
[17], [18].

Typically, in such applications, the SR is trained in isolation
from the downstream task, with the only weak connection through
the selection of images to train or fine-tune the SR method (e.g.,
for character recognition, SR is trained on character images).

We propose to bridge this isolation by explicitly incorporating
the objective of the downstream task (such as object detection)
into training of an SR module. Figure 1 illustrates the effect
of our proposed, task-driven approach to SR. Our proposal (e)
generated from a low-resolution (LR) image (b) can successfully
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bring recognition accuracy close to the score of their original high-
resolution (HR) image (a).

Our approach is motivated by two observations:

SR is ill-posed: Many possible HR images when downsampled
produce the same LR image. We expect that the additional
cue given by the downstream task objective such as detection
may help guide the SR solution.

Human perception and machine perception differ: It is
known that big differences are observed between human and
machine perceptions, in particular, with highly-complex deep
networks. This is perhaps best exemplified by adversarial
images [19], [20], [21] that can “fool” machine perception
but not human. Thus, if our goal is to super-resolve an image
in part for machine perception, we believe it is prudent to
explicitly “cater” to the machine perception when learning
SR.

The two SR images in Fig. 1 (d) and (e) illustrate these points.
Both look similar to the human eye, but the detection results differ
between these two SR images. Here, two objects (i.e., a person and
a motorbike) are detected successfully only in (e). Furthermore,
the conventional measure of reconstruction quality (PSNR) fails to
capture the difference, assigning higher value to (d) which yields
to much worse detection results.

The main contributions of this paper are:

• An approach to SR that uses the power of end-to-end train-
ing in deep learning to combine low-level and high-level
vision objectives, leading to what we call Task-Driven Super
Resolution (TDSR). As a means of increasing robustness of
object detection to LR inputs, this approach provides results
substantially better than other SR methods, and is potentially
applicable to a broad range of low-level image processing
tools and high-level tasks.

• A novel view of SR, explicitly acknowledging the generative
or semantic aspects of SR in high scaling factors, which we
hope will encourage additional work in the community to
help further reduce the gap between low-level and high-level
vision.
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(a) HR (b) LR (c) Bicubic SR (d) SR (no task) (e) TDSR (proposed)
PSNR: 21.26 PSNR: 22.02 PSNR: 21.54

Fig. 1. Scale sensitivity in object detection and the effectiveness of our proposed method (i.e., end-to-end learning in accordance with the mutual
improvement of SR and object detection tasks). Images shown in the top row show (a) an original high resolution image, (b) its low-resolution image
(here 1/8-size, padded with black), (c) SR image obtained by bicubic interpolation, (d) SR image obtained by the SR model optimized with no regard
to detection, and (e) SR image obtained by our proposed task-driven SR method, using the same model as in (d). For each of the reconstructed HR
images, we also report PSNR w.r.t. the original. Despite ostensibly lower PSNR, the TDSR result recovers the correct detection results with high
scores, in this case even suppressing a false detection present in the original HR input.

2 RELATED WORK

While there has been much work on SR and on evaluating and
improving some measurement of perceptual quality of images,
comparatively little work exist on optimizing image restoration
tools for machine perception.

2.1 Image quality assessment
Image restoration and enhancement require appropriate quality as-
sessment metrics both for evaluation and (when machine learning
is used) as training objectives. As mentioned in Sec. 1, PSNR
and SSIM [1] are widely used as such metrics, focusing on
comparing a reconstructed/estimated image with its ground truth
image. There exist methods for quality assessment that do not
require a reference ground truth image [22], [23], including some
that use deep neural networks to learn the metrics [24], [25].

Several quality assessment metrics [26], [27], [28] have been
evaluated specifically for SR, including no-reference metrics [29].
However all of these metrics are a proxy for (assumed or approx-
imated) human judgment perceptual quality, and do not consider
high-level visual tasks such as recognition.

Some task-dependent quality assessment metrics have been
proposed for certain tasks, including biometrics [30], face recog-
nition [31], and object recognition [32], showing improvements
vs. the task-agnostic metrics. None of them, however, have been
used in a joint learning framework with the underlying image
enhancement such as SR.

2.2 Image Super Resolution
A huge variety of image SR techniques have been proposed;
see survey papers [33], [34], [35] for more details. While self-
contained SR is attractive (e.g., self-similarity based SR [36], [37],
[38]), most recent SR algorithms utilize external training images
for higher performance; for example, exemplar based [39], [40],
[41], regression based [42], [43], and web-retrieval based [44]. The
effectiveness of using both self and external images is explored
in [45], [46].

Like other vision problems, SR has benefited from recent ad-
vances in deep convolutional neural networks (DCNNs). SRCNN
[47] enhances the spatial resolution of an input LR image by hand-
crafted upsampling filters. The enlarged image is then improved
by a DCNN. Further improvements are achieved with more ad-
vanced architectures, introducing residual connections [48], [49]

and recursive layers [50], however the use of the hand-crafted
upsampling filters remains an impediment. That can be alleviated
by embedding an upsampling layer into a DCNN [51], [52],
[53]. Progressive upsampling [54] is also effective for leveraging
information from different scales. By sharing the SR features at
different scales by iterative forward and backward projections,
DBPN-SR [55] enables the networks to preserve the HR compo-
nents by learning various up- and down-sampling operators while
generating deeper features.

While deep features provided by DCNNs allow us to pre-
serve clear high-frequency photo-realistic textures, it is difficult
to completely eliminate blur artifacts. This problem has been
addressed by introduction of novel objectives, such as perceptual
similarity [2], [3] and adversarial losses [56], [57]. Finally, the
two ideas can be combined, incorporating perceptual similarity
into generative adversarial networks (GANs) in SRGAN [58].

In contrast to prior work, we explicitly incorporate the objec-
tive of a well defined, discriminative task (such as detection) into
the SR framework.

2.3 Object detection
Most state-of-the-art object detection algorithms extract or eval-
uate object proposals (e.g., bounding boxes) [59], [60], [61],
[62], [63] within a query image and evaluate the “objectness”
of each bounding box for object detection, using DCNN features
computed or pooled over each box. In many recent models, the
mechanism for producing candidate boxes is incorporated into the
network architecture [64].

Unlike approaches using object proposals, SSD [65] and
YOLO9000 [66] use pre-set default boxes (a.k.a. anchor boxes)
covering a query image. The objectness score is computed for
each object category in all boxes while its spatial parameters (e.g.,
location, scale, and aspect ratio) are optimized. This streamlines
the computation at test time and produces extremely fast, as well
as accurate, detection framework.

2.4 Detection of small objects
One of the remaining problems in computer vision, such as
object detection and scene parsing, is to detect small objects.
This issue has been investigated by [67], [68], [69], [70]. Most
of these methods proposed context-aware network by re-scaling
the input to several resolutions then training the networks at each
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resolution or proposing a mechanism to select the pooling field
size to preserve the small details. Here we consider an alternative:
transform the LR images into HR images using SR. So that,
instead of designing more LR friendly detector, we can try to
make LR images “look like HR image”, for which we have plenty
of examples, in the hope that the existing detector “used to HR”
will then be able to detect objects. In other words, rather than
improve the detector, we pre-process the input to make it more
amenable to the detector as is.

Recently, some techniques have been proposed to solve the
problems of small object detection using SR [71], [72], [73].
However, the proposed method differs from these techniques in
two aspects. First, we show that traditional detection loss can be
used to improve machine perception on SR network rather than
using additional mechanisms such as adversarial training or two
sub-problems optimization which is hard to train. Second, we also
show how to explicitly train the model not only for SR but also for
joint SR + denoising/deblurring to handle more difficult scenarios
where the image are afflicted by additional sources of corruption
such as blur and noise.

2.5 Connections to generative models

There is also an interesting connection between our approach and
the gradient-based adversarial images [19] as well as the popular
“neural art” technique called DeepDream [74]. In both of those,
an input image (at full resolution) is modified using gradient
descent with the objective to achieve certain output for an image
classification network. For adversarial images the goal is to make
the network predict an incorrect class, while in DeepDream the
goals are aesthetic.

3 TASK DRIVEN SUPER-RESOLUTION

Our method relies on two building blocks: an SR network S and
a task network D as shown in Fig. 2. The SR network maps
an LR image xl to an HR image xh producing an SR image
xsr = S(xl; θSR), where θSR denotes all the parameters of the
SR network. The task network takes an image x and outputs a
(possibly structured) prediction ŷ = D(x; θD). We refer to these
predictors as “networks” because they are likely to be deep neural
networks. However our approach does not presume anything about
S and D beyond differentiability for training the whole network
with an end-to-end learning scheme.

We assume that the task network D has been trained and
its parameters θD remain fixed throughout training (and will, for
brevity, be omitted from notation).

Our method is applicable to any task network. It can be used
for a variety of tasks, for example, depth estimation or semantic
segmentation. However, in this paper, we restrict our attention to
the object detection task, in which ŷ consists of a set of scored
bounding boxes for given object classes.

3.1 Component networks

We use the recently proposed Deep Back-Projection Networks
(DBPN) [55] as the SR component. The DBPN achieve state of
the art or competitive results on standard SR benchmarks, when
trained with the MSE reconstruction loss

Lrec

(
xh, xsr

)
=

1

N

N∑
i=1

(xhi − xsri )2 (1)

where i ranges of the N pixel indices in the HR image xh.
As the detector, we use the Single Shot MultiBox Detector

(SSD) [65]. The SSD detector works with a set of default bounding
boxes, covering a range of positions, scales and aspect ratios; each
box is scored for presence of an object from every class. Given the
ground truth for an image x, B is the number of matched default
boxes to the ground truth boxes y. These matched boxes form
the predicted detections ŷ(x). The task (detection) loss of SSD is
combined of confidence loss and localization loss:

Ltask(y, ŷ(x)) =
1

B
[Lconf (y, ŷ(x)) + λLloc(y, ŷ(x))] (2)

The confidence loss Lconf penalizes incorrect class predictions
for the matched boxes. The localization loss Lloc penalizes dis-
placement of boxes vs. the ground truth, using smoothL1 distance.
Both losses in (2) are differentiable with respect to their inputs.

Importantly, every default bounding box in SSD is associated
with a set of cells in feature maps (activation layers) computed
by a convolutional neural network. As a result, since the loss
in (2) decomposes over boxes, it is a differentiable function of
the network activations and thus a function of the pixels in the
input image, allowing us to incorporate this task loss in the TDSR
objective described below.

Both of our chosen component networks have code made
publicly available by their authors, and can be trained end to
end, providing a convenient testbed for our approach; many other
choices are possible, in particular for the detector component, but
we do not explore them in this paper.

3.2 Task driven training
Normally, learning-based SR systems are trained using some sort
of reconstruction loss Lrec, such as mean (over pixels) squared
error (MSE) between xh and xsr . In contrast, the detector is
trained with Ltask intended to improve the measure of its ac-
curacy, typically measured as the average precision (AP) for one
class, and the mean AP (mAP) over classes for the entire data set.

Let x be the image with detection ground truth labels y, and
let ↓ (·) denote downscaling of an image by a fixed factor. We
propose the compound loss, which on the example (x, y) is given
by

L(x, y; θSR) =αLrec (x, S(↓ (x); θSR)) +

βLtask (y,D(S(↓ (x); θSR)))
(3)

where α and β are weights determining relative strength of the
reconstruction loss and the detection loss. Under the assumption
that both S and D are differentiable, we can use the chain rule,
and compute the gradient of Ltask with respect to its input, the
super-resolved ↓ (x). Then this per-pixel gradient is combined
with the per-pixel gradient of the reconstruction loss Lrec. The SR
parameters θSR are then updated using standard back-propagation
from this combined gradient:

α
∂

∂θSR
Lrec (x, S(↓ (x); θSR))+

β
∂Ltask (y,D(S(↓ (x))))

∂S(↓ (x))
∂S(↓ (x))
∂θSR

(4)

3.3 Interpretation
As mentioned in Section 1, SR is an ill-posed problem. At suffi-
ciently high upscaling factors, it resembles (conditional) image
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Fig. 2. Network Architecture. DBPN [55] as an SR network and SSD [65] as a task network concatenate to perform end-to-end training.

generation more than image restoration, since a large amount
of information destroyed in the downscaling process must be
“hallucinated”. Most current image generation methods, such as
GANs or autoencoders, either do not explicitly regard the semantic
content of the generated image, or “hardcode” it into the generator
by training only on images of a specific class. Our objective (3)
encourages the image to both look good to a human (similar to
the original) and look correct to the machine (yield the same
recognition results). The values of α and β control this tradeoff.
With α � β, we effectively ignore the downstream task, and get
the traditional, MSE-driven SR learning, with the limitations for
downstream detection discussed in Section 2 and demonstrated in
Section 4.

With β � α we effectively ignore the original HR image,
and the objective is purely semantic. In this case, intuitively, if
the “SR” method were to simply paste a fixed canonical object
of the correct class at the appropriate location and scale in the
image, and the detector correctly picks up on these objects, we
get a perfect value of the task loss. However, in this hypothetical
scenario we would in effect replace the SR with a LR detector.
That of course would bring up back to the original challenges
of LR detection. We also would not get the extra benefit of
creating human-interpretable intermediate HR image, connected
to the original LR input.

We expect the optimal tradeoff to be somewhere between these
scenarios, incorporating meaningful contributions from both the
reconstruction and the detection objectives. The precise “mixing”
of the two is subject to algorithm design, as detailed in Section 4.2.

4 EXPERIMENTAL RESULTS

4.1 Implementation Details

Base networks DBPN [55] constructs mutually-connected up- and
down-sampling layers each of which represents different types
of image degradation and HR components. The stack of up-
and down- projection units creates an efficient way to iteratively
minimize the reconstruction error, to reconstruct a huge variety
of SR features, and to enable large scaling factors such as 8×
enlargement. We used the setting recommended by the authors:
“a 8 × 8 convolutional layer with four striding and two padding”
and “a 12 × 12 convolutional layer with eight striding and two
padding” are used for 4× and 8× SRs, respectively, in order to
construct a projection unit. Here, we use D-DBPN which is one of
DBPN variants. For object detection, we use SSD300 where the
input size is 300× 300 pixels. The network uses VGG16 through
conv5_3 layer, then uses conv4_3, conv7 (fc7), conv8_2,

conv9_2, conv10_2, and conv11_2 as feature maps to predict
the location and confidence score of each detected object. The
code for both networks are publicly accessible in the internet.
Datasets We initialized all experiments with DBPN model pre-
trained on the DIV2K data set [75], made available by the
authors of [55]. We used SSD network pretrained on PASCAL
VOC0712 trainval and MSCOCO train2017. When fine-
tuning DBPN in our experiments, with or without task-driven ob-
jective, we reused PASCAL VOC0712 trainval and MSCOCO
train2017, with data augmentation. The augmentation consists
of photometric distortion, scaling, flipping, random cropping that
are recommended to train SSD. Test images on VOC2007 test
and MSCOCO val2017 were used for testing in all experiments.
The input of DBPN was a LR image that was obtained by
bicubic downscaling the original (HR, 300 × 300) image from
the data set with a particular scaling factor (i.e., 1/4 or 1/8 in our
experiments, corresponding to 4× and 8× SR).
Training setting We used a batch size of 6. The learning rate was
initialized to 1e − 4 for all layers and decreased by a factor of
10 after 2× 105 iterations for training runs consisting of 300,000
iterations. For optimization, we used Adam with momentum set
to 0.9. All experiments were conducted using PyTorch 0.3.1 on
NVIDIA TITAN X GPUs.

4.2 Training schedules

The definition of loss in (3) depends on the values of α and β, and
we can consider a number of settings, both static (fixed weights)
and dynamic (weights changing through training).
Fine-tune Generally, we assume that S has been trained for SR
for a given factor on images from a domain that could be different
from the domain of D. We can simply fine-tune SR on the new
domain, without incorporating the task loss: α = 1, β = 0.
Balanced We can start with a phase of fine-tuning the SR on
reconstruction only (α = 1, β = 0) and then increase β to a
non-zero value, introducing task-driven component. Note that the
appropriate relative magnitude of β with respect to α will depend
not only on the desired tradeoff between the objectives, but also
on the relative scale of the two loss functions.
Task only Alternatively, we can forgo the reconstruction driven
phase, and fine-tune S with task loss only, α = 0, β = 1.
Gradual Finally, we can gradually increase β, from zero to a
high value, training with each value for a number of iterations.
We could expect this schedule to provide a more gentle introduc-
tion of the task objective, gradually refining the initially purely
reconstruction-driven SR.
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4.3 Comparison of Training Schedules
Following the discussion in Sec. 4.2, we investigate different
settings and schedules for values of α and β that control
the reconstruction-detection tradeoff in (3) trained on PASCAL
VOC0712. Table 1 shows PSNR and AP for a number of schedules
described on the left in (n : α : β) format, indicating training
for n iterations with the corresponding values of α (weight on
reconstruction loss) and β (weight on detection loss); + indicates
continuation of training. The schedules are
(a) SR: Baseline using pretrained SR not fine-tuned on Pascal.
(b) SR-FT: Fine-tuned for 100k iterations.
(c) SR-FT+: Fine-tuned for 300k iterations.
(d) TDSR-0.1: Balanced schedule in which after 100k of

reconstruction-only training, we introduce detection loss with
the constant weight of β = 0.1.

(e) TDSR-0.01: Same as previous but the β = 0.01.
(f) TDSR-DET: α = 0 so only detection (AP) loss is used to

fine-tune SR for 300k iterations.
(g) TDSR-Grad: Gradual increase of β to 1 throughout the 300k

iterations.
The values in the table provide us with multiple observations.

First, it helps to fine-tune SR on the new domain (PASCAL VOC),
so SR-FT has much higher PSNR and AP than SR. It helps to fine-
tune for longer, hence better results with SR-FT+ (in both PSNR
and AP), but we start observing diminishing returns. Switching to
variants of TDSR, we see a dramatic increase in AP accuracy.
As the relative value of β becomes larger, we get additional
improvements, but at the cost of a significant decline in PSNR
(and as we see in Fig. 3 and in Section 4.8, in visual quality).
However, for a certain regime, namely TDSR-0.01, we see a much
higher AP than the no-task values, with only a marginal decline
in PSNR. We thus identify this schedule as the best based on our
experiments. It is also interesting to see that PSNR can help the
network to have better mAP, proven by TDSR-0.01 which has
higher mAP than TDSR-DET. Finally, the numbers in the table
further illustrate that higher PSNR must not correspond to better
detection results.

4.4 Performance on VOC and COCO dataset
Table 2 shows detailed results per class for comparing our TDSR
method to other SR approaches trained on VOC0712 trainval
and evaluated on VOC2007 test, including the baseline bicubic
SR, and a recently proposed state-of-the-art SR method (SR-
GAN [58]). Comparison to SRGAN is particularly interesting
since it uses a different kind of objective (adversarial/perceptual)
which may be assumed to be better suited for task-driven SR. Note
that all the other SR models were just pretrained, and not fine-
tuned on Pascal. We also compared results obtained directly from
LR images (padded with black to fit to the pretrained SSD300
detector). It is shown that SR-FT+ successfully to have highest
PSNR. However, TDSR overpowered other methods for all classes
and boosted the performance of LR images.

Figure 4 and 5 show graphs where the vertical and horizontal
axes denote mAP/PSNR and iterations, respectively, on 4× and
8× in balance setting. It shows that the balance setting success-
fully increases the accuracy (AP) while maintaining a good quality
of images (PSNR).

We see that reduction in resolution has a drastic effect on
the AP of the detector, dropping it from 75.8 to 41.7 for 4×
and 16.6 for 8× as shown in Table 2. This is presumably due

to both the actual loss of information, and the limitations of the
detector architecture which may miss small bounding boxes. The
performance is not significantly improved by non-task-driven SR
methods, which in some cases actually harm it further! However,
our proposed TDSR approach obtains significantly better results
for both scaling factors, and recovers a significant fraction of the
detection accuracy lost in LR.

In accordance with VOC results, the results trained on COCO
dataset is also shown the effectiveness of TDSR. Table 3 shows
detailed result on COCO eval2017. TDSR is successfully to
increase the accuracy of LR images roughly by 100% and 500%
for 4× and 8×, respectively and outperform other methods.
Figure 6 and 7 show the accuracy of TDSR and other methods
for each class. TDSR consistently has better performance than
SR-FT+ for most of the classes especially on 8×.

4.5 Performance on different variants of DBPN
In our experiments, we use D-DBPN as the default setting for
DBPN. Here, we want to show the trade-off using shallower net-
work from other variants of DBPN. Table 4 shows the comparison
of D-DBPN and DBPN-S, which is two variants of DBPN, on
performing TDSR. DBPN-S, which has a lower capacity than D-
DBPN, gets lower AP of 2.97 and 4.92 than D-DBPN on 4×
and 8×, respectively. Overall, D-DBPN performs better accuracy
than DBPN-S on both scale factors especially 8×. However, for
real-time application, DBPN-S can be a suitable option which can
reduce more than half of DBPN’s runtime.

4.6 Fine-tuning SSD
We reiterate that our current focus is on using a fixed pre-trained
detector. We also note the common observation that tuning the
detector on a modified domain (e.g., degraded images) may impact
its performance on the original domain; this is often referred to
as forgetting. Also, detecting very small objects is a notoriously
difficult task for modern detection frameworks.

However, to show the effectiveness of TDSR even on fine-
tuned SSD, we fine-tuned SSD on several SR images, such as
Bicubic (SSD-Bicubic), SR-FT+ (SSD-SRFT+), and TDSR (SSD-
TDSR) on PASCAL VOC. The results is shown in Table 5. SSD-
Pretrained was trained on original HR images. It shows that each
domain performs the best on its fine-tuned SSD.

The performance of SSD-Bicubic, which fine-tuned on Bicu-
bic images, is 65.98; unfortunately, the fine-tuned detector now
only gets AP of 59.44 on the “original” HR images (down from
75.78). The SSD-SRFT+ achieves 66.58 on SR-FT+ images, but
64.91 on the “original” HR images, down from 75.78. In contrast,
with SSD-TDSR, AP on SR images is 67.67 and on original HR
images it only drops from 75.78 to 72.99. This suggests: (a) in a
specific sense (semantic information accessible to the detector)
TDSR is a closer match to HR images; and (b) even if one
is willing to have a separate detector for LR images, it is still
beneficial to work with TDSR.

4.7 Comparison with Different SR Methods in More Dif-
ficult Scenarios
In realistic settings, images are afflicted by additional sources of
corruption, which can aggravate the already serious damage from
reduction in resolution. In the final set of experiments, we evaluate
ours and other methods in such settings. Here, the images (during
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(a) HR (b) SR-FT+ (c) TDSR-DET (d) TDSR-Grad (e) TDSR-0.01
PSNR: 22.02 dB PSNR: 16.63 dB PSNR: 19.45 dB PSNR: 21.54 dB

Fig. 3. Comparison on training schedules on 8×. PSNR values are for this image only.

TABLE 1
Comparison of training schedules for (3), evaluated on VOC2007 test. n : α : β indicates training for n iterations with the given α,β values. See

text for additional explanations. Red here and in the other tables indicates the best performance.

HR: 75.78% AP 4× 8×
Setting n-iter : α : β PSNR AP PSNR AP
SR 0k:1:0 22.80 41.9 17.50 10.6
SR-FT 100k:1:0 26.65 52.6 22.77 22.0
SR-FT+ 100k:1:0+200k:1:0 26.72 53.6 22.82 22.9
TDSR-0.1 100k:1:0+200k:1:0.1 25.13 61.6 21.08 36.1
TDSR-0.01 100k:1:0+200k:1:0.01 24.06 62.2 22.26 37.5
TDSR-DET 300k:0:1 17.02 61.0 16.72 37.4
TDSR-Grad 100k:1:0+70k:1:0.01+70k:1:0.1+60k:1:1 21.80 61.5 19.78 37.2

TABLE 2
VOC2007 test detection results on 4× and 8×.

Scale Method n-iter : wtd PSNR AP aero bike bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv
HR - - 75.8 79.3 85.4 74.1 68.9 46.6 83.7 85.5 86.1 59.1 81.3 77.1 83.5 85.2 82.9 77.6 46.7 73.8 79.9 84.8 73.8
LR - - 41.7 48.9 46.8 33.5 31.9 10.7 57.7 48.6 55.9 18.5 31.7 50.1 50.2 61.3 54.2 45.0 18.5 32.8 52.3 52.9 33.4
Bicubic - 25.30 41.3 50.9 43.9 37.3 22.0 14.5 53.2 53.9 55.8 18.8 35.6 37.9 52.1 56.9 53.5 49.5 18.7 40.3 51.1 41.8 38.5
SRGAN - 23.51 44.6 62.2 45.0 37.0 29.3 15.9 63.0 56.7 44.6 26.5 40.4 46.4 47.9 59.2 52.1 53.1 18.1 40.5 56.9 48.6 47.9

4× DBPN - 22.87 41.9 61.3 41.5 34.4 25.4 16.1 57.7 55.1 43.4 28.9 35.6 44.2 40.7 52.4 47.3 50.0 15.6 32.5 59.1 47.0 50.2
SR-FT 100k : 0 26.65 52.6 59.5 61.7 44.3 33.5 26.5 65.6 63.8 61.2 36.2 45.1 55.5 55.7 67.6 64.3 59.4 21.8 45.3 65.8 58.6 60.2
SR-FT+ 100k : 1 : 0+200k : 1 : 0 26.72 53.6 59.6 62.9 45.0 34.8 28.3 67.3 64.6 60.7 36.7 45.5 57.5 56.4 68.0 67.0 60.0 22.1 47.9 68.0 59.1 60.7
TDSR 100k : 1 : 0+200k : 1 : 0.01 24.06 62.2 70.6 70.1 55.0 49.4 29.8 71.4 71.1 74.4 41.3 62.6 66.4 69.8 76.1 71.7 67.7 32.8 59.9 71.8 70.9 62.0
LR - - 16.6 23.8 17.6 12.2 11.3 9.09 24.6 26.1 23.5 6.27 14.3 13.7 20.1 20.5 23.5 20.6 9.53 10.3 16.2 15.0 12.9
Bicubic - 21.85 11.2 13.6 9.80 10.9 1.71 9.09 12.3 18.9 22.7 9.09 7.41 9.91 18.8 10.8 16.9 16.1 2.42 9.09 5.67 2.60 16.1
SRGAN - 18.72 13.4 27.2 10.1 12.3 9.96 6.13 15.8 15.6 15.6 9.39 9.89 8.16 18.6 11.7 13.0 20.5 9.44 10.8 17.1 6.59 19.9

8× DBPN - 17.50 10.6 25.0 9.09 10.8 9.54 0.80 16.3 14.7 13.6 3.45 9.09 7.56 12.2 9.09 9.49 13.52 1.96 9.09 16.1 4.55 16.69
SR-FT 100k : 0 22.77 22.0 32.0 19.3 18.0 10.7 9.60 34.9 34.6 26.4 13.0 14.5 25.1 27.0 22.2 26.9 31.0 9.46 10.9 26.7 18.1 30.3
SR-FT+ 100k : 1 : 0+200k : 1 : 0 22.82 22.9 32.3 24.1 19.7 11.4 9.74 34.8 34.6 27.7 13.3 14.5 24.5 26.7 23.3 28.8 31.9 9.58 11.3 30.1 18.4 30.8
TDSR 100k : 1 : 0+200k : 1 : 0.01 22.26 37.5 49.3 40.9 30.9 25.9 11.4 51.6 47.8 45.0 15.2 31.5 44.1 41.9 50.3 45.6 47.0 14.4 30.6 46.3 40.3 39.6

Fig. 4. Convergence 4× which is validated using VOC2007 test.

both train and test phases) were also degenerated by blur or noise,
prior to downscaling and processing by SR and detector. As with
other experiments, we kept the same originally pretrained SSD
detector as before.

Blurred Images Every HR image was blurred by Gaussian kernel,
σ = 1. In training the SR network, both in pure SR fine-tuning
and in TDSR joint optimization, the objective (Lrec) was defined
with respect to the original (clean) HR images.

The results of this experiment are shown in Table 6. As

with clean images, our proposed method outperforms all other
approaches for both scaling factors, even obtaining a small (and
likely insignificant) improvement compared to the blurry HR
inputs! This application of our method can be thought of as task-
driven deblurring by SR.

Noisy Images In a similar vein, we evaluate the SR methods on
images affected by Gaussian noise (σ = 0.1) prior to downscal-
ing. Again, Lrec penalizes error w.r.t. the clean HR image.

The AP on noise HR images is 57.3, an almost 20 points drop
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Fig. 5. Convergence 8× which is validated using VOC2007 test.

TABLE 3
Results on MSCOCO val2017. The bracket values is for (4× : 8×) respectively.

HR LR Bicubic DBPN SRGAN SR-FT SR-FT+ TDSR
AP@[ IoU = 0.50 : 0.95 | area= all ] 24.2 (8.2 : 1.9) (8.1 : 2.0) (1.2 : 0.1) (0.6 : 0.1) (13.7 : 4.4) (14.1 : 4.8) (16.7 : 9.8)
AP@[ IoU = 0.50 | area= all ] 42.2 (15.5 : 4.1) (14.9 : 3.7) (2.3 : 0.2) (1.2 : 0.1) (24.8 : 8.1) (25.4 : 8.8) (30.2 : 18.8)
AP@[ IoU = 0.75 | area= all ] 24.6 (7.9 : 1.7) (7.8 : 1.9) (1.1 : 0.0) (0.6 : 0.0) (13.7 : 4.3) (14.0 : 4.7) (16.7 : 9.2)
AP@[ IoU = 0.50 : 0.95 | area= small ] 7.2 (0.2 : 0.0) (0.9 : 0.1) (0.1 : 0.0) (0.1 : 0.0) (2.0 : 0.3) (2.2 : 0.3) (2.7 : 0.7)
AP@[ IoU = 0.50 : 0.95 | area= medium ] 26.7 (3.8 : 0.4) (6.5 : 1.2) (0.9 : 0.0) (0.4 : 0.1) (12.8 : 3.3) (13.2 : 3.6) (15.8 : 6.7)
AP@[ IoU = 0.50 : 0.95 | area= large ] 39.4 (19.9 : 4.7) (17.6 : 5.2) (2.7 : 0.1) (1.5 : 0.1) (27.2 : 11.0) (28.0 : 11.4) (31.0 : 20.8)

Fig. 6. Result per class from COCO val2017 on 4×, AP at IoU = 0.50 : 0.95.

Fig. 7. Result per class from COCO val2017 on 8×, AP at IoU = 0.50 : 0.95.

compared to the clean HR images. The results are shown in Table
7. As with blur, our proposed method outperforms significantly all
other approaches for both scaling factors.

4.8 Qualitative Analysis

Figures 8, 9, and 10 show examples of our results compared with
those of other methods. The results for SRGAN [58] and SR-
FT+ sometimes confuse the detector and recognize it as different
object classes, again indicating that optimizing Lrec and high
PSNR do not necessarily correlate with the accuracy. Meanwhile,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE 4
Average Precision on the variants of DBPN.

4× 8×
Input D-DBPN DBPN-S D-DBPN DBPN-S
SR-FT+ 53.60 49.77 22.89 18.10
TDSR 62.25 59.28 37.49 32.57
# parameters (k) 10426 2386 23205 5336
runtime (sec) 0.122 0.054 0.114 0.051

TABLE 5
Average Precision for fine-tuned SSD on different image domain (4×).

Input SSD-Pretrained SSD-Bicubic SSD-SRFT+ SSD-TDSR
HR 75.78 59.44 64.91 72.99
Bicubic 41.32 65.98 48.33 46.67
SR-FT+ 53.60 56.45 66.58 58.11
TDSR 62.25 52.54 49.50 67.67

unique pattern that produced by our proposed optimization helps
the detector to recognize the objects better. Note that the TDSR
does produce, in many images, artifacts somewhat reminiscent of
those in DeepDream [74], but those are mild, and are offset by a
drastically increased detection accuracy.

5 CONCLUSIONS

We have proposed a novel objective for training SR: a compound
loss that caters to the downstream semantic task, and not just to
the pixel-wise image reconstruction task as traditionally done. Our
results, which consistently exceed alternative SR methods in all
conditions, indicate that modern end-to-end training enables joint
optimization of tasks what has traditionally been separated into
low-level vision (super-resolution) and high-level vision (object
detection). These results also suggest some avenues for future
work. The first is to investigate task-driven SR methods for
additional visual tasks, such as semantic segmentation, image
captioning, etc. A complementary direction is to extend the task-
driven formulation to other image reconstruction and enhancement
tools. For instance, we have demonstrated some success in “de-
blurring by SR”, and one can expect further improvement when
using a properly designed deblurring network combined with task-
driven objectives. Finally, the community may be well served by
a continuing quest for better image quality metrics, to replace
or augment simplistic reconstruction losses such as mean square
error.
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Fig. 8. Sample results for 4× (upper row) and 8× (lower row). Zoom in to see detection labels and scores.
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Fig. 9. Sample results on blur images for 4× (upper row) and 8× (lower row). Zoom in to see detection labels and scores.
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(a) HR+Noise (b) LR (c) Bicubic (d) SR-FT+ (e) TDSR

Fig. 10. Sample results on noise images for 4× (upper row) and 8× (lower row). Zoom in to see detection labels and scores.
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