
1

Deep Back-Projection Networks for Single
Image Super-resolution

Muhammad Haris, Greg Shakhnarovich, Member, IEEE, and Norimichi Ukita, Member, IEEE

Abstract—Previous feed-forward architectures of recently proposed deep super-resolution networks learn the features of
low-resolution inputs and the non-linear mapping from those to a high-resolution output. However, this approach does not fully address
the mutual dependencies of low- and high-resolution images. We propose Deep Back-Projection Networks (DBPN), the winner of two
image super-resolution challenges (NTIRE2018 and PIRM2018), that exploit iterative up- and down-sampling layers. These layers are
formed as a unit providing an error feedback mechanism for projection errors. We construct mutually-connected up- and
down-sampling units each of which represents different types of image degradation and high-resolution components. We also show
that extending this idea to several variants applying the latest deep network trends, such as recurrent network, dense connection, and
residual learning, to improve the performance. The experimental results yield superior results and in particular establishing new
state-of-the-art results across multiple data sets, especially for large scaling factors such as 8×.

Index Terms—Image super-resolution, deep cnn, back-projection, deep concatenation, large scale, recurrent, residual

F

1 INTRODUCTION

S IGNIFICANT progress in deep learning for vision [1], [2], [3],
[4], [5], [6], [7] has recently been propagating to the field of

super-resolution (SR) [8], [9], [10], [11], [12], [13], [14], [15].
Single image SR (SISR) is an ill-posed inverse problem

where the aim is to recover a high-resolution (HR) image from
a low-resolution (LR) image. A currently typical approach is to
construct an HR image by learning non-linear LR-to-HR mapping,
implemented as a deep neural network [12], [13], [14], [16], [17],
[18], [19]. These networks compute a sequence of feature maps
from the LR image, culminating with one or more upsampling
layers to increase resolution and finally construct the HR image.
In contrast to this purely feed-forward approach, the human visual
system is believed to use a feedback connection to simply guide
the task for the relevant results [20], [21], [22]. Perhaps hampered
by lack of such feedback, the current SR networks with only feed-
forward connections have difficulty in representing the LR-to-HR
relation, especially for large scaling factors.

On the other hand, feedback connections were used effec-
tively by one of the early SR algorithms, the iterative back-
projection [23]. It iteratively computes the reconstruction error,
then uses it to refine the HR image. Although it has been proven
to improve the image quality, results still suffers from ringing and
chessboard artifacts [24]. Moreover, this method is sensitive to
choices of parameters such as the number of iterations and the
blur operator, leading to variability in results.

Inspired by [23], we construct an end-to-end trainable architec-
ture based on the idea of iterative up- and down-sampling layers:
Deep Back-Projection Networks (DBPN). Our networks are not
only able to remove the ringing and chessboard effect but also
successfully perform large scaling factors, as shown in Fig. 1.
Furthermore, DBPN has been proven by winning SISR challenges.

• M. Haris and N. Ukita are with Intelligent Information Media Lab, Toyota
Technological Institute (TTI), Nagoya, Japan, 468-8511.
E-mail: {mharis, ukita}@toyota-ti.ac.jp

• G. Shakhnarovich is with TTI at Chicago, US. E-mail: greg@ttic.edu

Manuscript received -; revised -.

Fig. 1. Super-resolution result on 8× enlargement. PSNR: LapSRN [13]
(15.25 dB), EDSR [25] (15.33 dB), and Ours [26] (16.63 dB).

On NTIRE2018 [27], DBPN is the 1st winner on track 8× Bicubic
downscaling. On PIRM2018 [28], DBPN got 1st on Region 2, 3rd

on Region 1, and 5th on Region 3.
Our work provides the following contributions:

(1) Iterative up- and down-sampling units. Feed-forward ar-
chitectures, which are considered as a one-way mapping, only
map rich representations of the input to the output space. This
approach is unsuccessful to map LR and HR image, especially in
large scaling factors, due to limited features available in the LR
spaces. Our networks focus not only on generating variants of the
HR features using the up-sampling unit but also on projecting
it back to the LR spaces using the down-sampling unit. It is
shown in Fig. 2 (d), alternating between up- (blue box) and down-
sampling (gold box) units, which represent the mutual relation
of LR and HR features. This procedure can also be considered
as features augmentation to represent various image degradation
and HR components. The detailed explanation can be seen in
Section 3.2.

2

Fig. 2. Comparisons of Deep Network SR. (a) Predefined upsampling (e.g., SRCNN [16], VDSR [12], DRRN [14]) commonly uses the conventional
interpolation, such as Bicubic, to upscale LR input images before entering the network. (b) Single upsampling (e.g., FSRCNN [17], ESPCN [18])
propagates the LR features, then construct the SR image at the last step. (c) Progressive upsampling uses a Laplacian pyramid network to gradually
predict SR images [13]. (d) Iterative up- and down-sampling approach is proposed by our DBPN that exploit the mutually connected up- (blue box)
and down-sampling (gold box) units to obtain numerous HR feature maps in different depths.

(2) Error feedback. We propose an iterative error-correcting
feedback mechanism for SR, which calculates both up- and down-
projection errors to guide the reconstruction for obtaining better
results. Here, the projection errors are used to refine the initial
features in early layers. The detailed explanation can be seen in
Section 3.1.
(3) Deep concatenation. Our networks represent different types
of image degradation and HR components produced by each up-
and down-sampling unit. This ability enables the networks to
reconstruct the HR image using concatenation of the HR feature
maps from all of the up-sampling units. Our reconstruction can
directly utilize different types of HR feature maps from different
depths without propagating them through the other layers as shown
by the red arrows in Fig. 2 (d).
(4) Variants of DBPN. We show that DBPN can be modified
into several variants. We propose four improvements for DBPN:
dense connected projection unit (Section 4.1), Recurrent DBPN
(Section 4.2), Residual DBPN (Section 4.3), and Photo Realistic
DBPN (Section 6).

2 RELATED WORK

2.1 Image super-resolution using deep networks

Deep Networks SR can be primarily divided into four types as
shown in Fig. 2.

(a) Predefined upsampling commonly uses interpolation as
the upsampling operator to produce a middle resolution (MR)
image. This scheme was firstly proposed by SRCNN [16] to learn
MR-to-HR non-linear mapping with simple convolutional layers.
Later, the improved networks exploited residual learning [12],
[14] and recursive layers [19]. However, this approach has higher
computation because the input is the MR image which has the
same size as the HR image.

(b) Single upsampling offers a simple way to increase the
resolution. This approach was firstly proposed by FSRCNN [17]
and ESPCN [18]. These methods have been proven effective to in-
crease the resolution and replace predefined operators. Further im-
provements include residual network [25], dense connection [29],

and channel attention [15] However, they fail to learn complicated
mapping of LR-to-HR image, especially on large scaling factors,
due to limited feature maps from the LR image. This problem
opens the opportunities to propose the mutual relation from LR-
to-HR image that can preserve HR components better.

(c) Progressive upsampling was recently proposed in Lap-
SRN [13]. It progressively reconstructs the multiple SR images
with different scales in one feed-forward network. For the sake of
simplification, we can say that this network is a stacked of single
upsampling networks which only relies on limited LR feature
maps. Due to this fact, LapSRN is outperformed even by our
shallow networks especially for large scaling factors such as 8×
in experimental results.

(d) Iterative up- and down-sampling is proposed by our
networks [26]. We focus on increasing the sampling rate of HR
feature maps in different depths from iterative up- and down-
sampling layers, then, distribute the tasks to calculate the recon-
struction error on each unit. This scheme enables the networks to
preserve the HR components by learning various up- and down-
sampling operators while generating deeper features.

2.2 Feedback networks

Rather than learning a non-linear mapping of input-to-target space
in one step, the feedback networks compose the prediction process
into multiple steps which allow the model to have a self-correcting
procedure. Feedback procedure has been implemented in various
computing tasks [30], [31], [32], [33], [34], [35], [36].

In the context of human pose estimation, Carreira et al. [30]
proposed an iterative error feedback by iteratively estimating and
applying a correction to the current estimation. PredNet [36]
is an unsupervised recurrent network to predictively code the
future frames by recursively feeding the predictions back into the
model. For image segmentation, Li et al. [33] learn implicit shape
priors and use them to improve the prediction. However, to our
knowledge, feedback procedures have not been implemented to
SR.

3

2.3 Adversarial training

Adversarial training, such as with Generative Adversarial Net-
works (GANs) [37] has been applied to various image reconstruc-
tion problems [3], [6], [8], [38], [39]. For the SR task, Johnson
et al. [8] introduced perceptual losses based on high-level features
extracted from pre-trained networks. Ledig et al. [38] proposed
SRGAN which is considered as a single upsampling method. It
proposed the natural image manifold that is able to create photo-
realistic images by specifically formulating a loss function based
on the euclidian distance between feature maps extracted from
VGG19 [40]. Our networks can be extended with the adversarial
training. The detailed explanation is available in Section 6.

2.4 Back-projection

Back-projection [23] is an efficient iterative procedure to mini-
mize the reconstruction error. Previous studies have proven the
effectiveness of back-projection [41], [42], [43], [44]. Originally,
back-projection in SR was designed for the case with multiple LR
inputs. However, given only one LR input image, the reconstruc-
tion procedure can be obtained by upsampling the LR image using
multiple upsampling operators and calculate the reconstruction
error iteratively [24]. Timofte et al. [44] mentioned that back-
projection could improve the quality of the SR images. Zhao et
al. [41] proposed a method to refine high-frequency texture details
with an iterative projection process. However, the initialization
which leads to an optimal solution remains unknown. Most of
the previous studies involve constant and unlearned predefined
parameters such as blur operator and number of iteration.

To extend this algorithm, we develop an end-to-end trainable
architecture which focuses to guide the SR task using mutually
connected up- and down-sampling units to learn non-linear mutual
relation of LR-to-HR image. The mutual relation between LR
and HR image is constructed by creating iterative up- and down-
projection unit where the up-projection unit generates HR feature
maps, then the down-projection unit projects it back to the LR
spaces as shown in Fig. 2 (d). This enables the networks to
preserve the HR components by learned various up- and down-
sampling operators and generates deeper features to construct
numerous LR and HR feature maps.

3 DEEP BACK-PROJECTION NETWORKS

Let Ih and I l be HR and LR image with (Mh × Nh) and
(M l ×N l), respectively, where M l < Mh and N l < Nh. The
main building block of our proposed DBPN architecture is the
projection unit, which is trained (as part of the end-to-end training
of the SR system) to map either an LR feature map to an HR map
(up-projection), or an HR map to an LR map (down-projection).

3.1 Projection units

The up-projection unit is defined as follows:

scale up: Ht
0 = (Lt−1 ∗ pt) ↑s, (1)

scale down: Lt
0 = (Ht

0 ∗ gt) ↓s, (2)

residual: elt = Lt
0 − Lt−1, (3)

scale residual up: Ht
1 = (elt ∗ qt) ↑s, (4)

output feature map: Ht = Ht
0 +Ht

1 (5)

Fig. 3. Proposed up- and down-projection units in the DBPN. These units
produce residual e between the initial features and the reconstructed
features, then fuse it back by summing it to the initial features.

where * is the spatial convolution operator, ↑s and ↓s are, respec-
tively, the up- and down-sampling operator with scaling factor s,
and pt, gt, qt are (de)convolutional layers at stage t.

The up-projection unit, illustrated in the upper part of Fig. 3,
takes the previously computed LR feature map Lt−1 as input, and
maps it to an (intermediate) HR map Ht

0; then it attempts to map
it back to LR map Lt

0 (“back-project”). The residual (difference)
elt between the observed LR map Lt−1 and the reconstructed Lt

0

is mapped to HR again, producing a new intermediate (residual)
map Ht

1; the final output of the unit, the HR map Ht, is obtained
by summing the two intermediate HR maps.

The down-projection unit, illustrated in the lower part of Fig. 3,
is defined very similarly, but now its job is to map its input HR
map Ht to the LR map Lt.

scale down: Lt
0 = (Ht ∗ g′t) ↓s, (6)

scale up: Ht
0 = (Lt

0 ∗ p′t) ↑s, (7)

residual: eht = Ht
0 −Ht, (8)

scale residual down: Lt
1 = (eht ∗ g′t) ↓s, (9)

output feature map: Lt = Lt
0 + Lt

1 (10)

We organize projection units in a series of stages, alternating
between H and L. These projection units can be understood as
a self-correcting procedure which feeds a projection error to the
sampling layer and iteratively changes the solution by feeding
back the projection error.

The projection unit uses large sized filters such as 8 × 8
and 12 × 12. In the previous approaches, the use of large-sized
filters is avoided because it can slow down the convergence speed
and might produce sub-optimal results. However, the iterative
up- and down-sampling units enable the mutual relation between
LR and HR and take benefit of large receptive fields to perform
better performance especially on large scaling factor where the
significant amount of pixels is needed.

3.2 Network architecture
The proposed DBPN is illustrated in Fig. 4. It can be divided into
three parts: initial feature extraction, projection, and reconstruc-
tion, as described below. Here, let conv(f, n) be a convolutional
layer, where f is the filter size and n is the number of filters.

1) Initial feature extraction. We construct initial LR feature-
maps L0 ∈ RM l×N l×n0 from the input using conv(3, n0).
Then conv(1, nR) is used to reduce the dimension from n0
to nR before entering projection step where n0 is the number
of filters used in the initial LR features extraction and nR is
the number of filters used in each projection unit.

4

Fig. 4. An implementation of DBPN for super-resolution which exploits densely connected projection unit to encourage feature reuse.

2) Back-projection stages. Following initial feature extraction
is a sequence of projection units, alternating between con-
struction of LR and HR feature maps (Lt ∈ RM l×N l×nR

and Ht ∈ RMh×Nh×nR). Later, it further improves by
dense connection where each unit has access to the outputs
of all previous units (Section 4.1).

3) Reconstruction. Finally, the target HR image is recon-
structed as Isr = fRec([H

1, H2, ...,Ht]), where fRec use
conv(3, 3) as reconstruction and [H1, H2, ...,Ht] refers to
the concatenation of the feature-maps produced in each up-
projection unit which called as deep concatenation.

Due to the definitions of these building blocks, our network
architecture is modular. We can easily define and train networks
with different numbers of stages, controlling the depth. For a
network with T stages, we have the initial extraction stage (2
layers), and then T up-projection units and T −1 down-projection
units, each with 3 layers, followed by the reconstruction (one
more layer). However, for the dense projection unit, we add
conv(1, nR) in each projection unit, except the first three units
as mentioned in Section 4.1.

4 THE VARIANTS OF DBPN
In this section, we show how DBPN can be modified to apply the
latest deep learning trends.

4.1 Dense projection units
The dense inter-layer connectivity pattern in DenseNets [1] has
been shown to alleviate the vanishing-gradient problem, produce
improved features, and encourage feature reuse. Inspired by this
we propose to improve DBPN, by introducing dense connections
in the projection units called, yielding Dense DBPN.

Unlike the original DenseNets, we avoid dropout and batch
norm, which are not suitable for SR, because they remove the
range flexibility of the features [25]. Instead, we use 1 × 1
convolution layer as the bottleneck layer for feature pooling and
dimensional reduction [11], [45] before entering the projection
unit.

In Dense DBPN, the input for each unit is the concatenation of
the outputs from all previous units. Let the Lt̃ and H t̃ be the input
for dense up- and down-projection unit, respectively. They are
generated using conv(1, nR) which is used to merge all previous
outputs from each unit as shown in Fig. 5. This improvement
enables us to generate the feature maps effectively, as shown in
the experimental results.

Fig. 5. Proposed up- and down-projection unit in the Dense DBPN. The
feature maps of all preceding units (i.e., [L1, ..., Lt−1] and [H1, ..., Ht]
in up- and down-projections units, respectively) are concatenated and
used as inputs, and its own feature maps are used as inputs into all
subsequent units.

4.2 Recurrent DBPN
Here, we propose recurrent DBPN which is able to reduce the
number of parameters and widen the receptive field without
increasing the model capacity. In SISR, DRCN [19] proposed
recursive layers without introducing new parameters for additional
convolutions in the networks. Then, DRRN [14] improves residual
networks by introducing both global and local residual learning
using a very deep CNN model (up to 52-layers). DBPN can also
be treated as a recurrent network by sharing the projection units
across the stages. We divided recurrent DBPN into two variants as
mentioned below.
(a) Single pair of projection unit (DBPN-R) utilizes only one
up-projection unit and one down-projection unit which is shared
across all stages and does not utilize dense connection as shown
in Fig. 6.
(b) Multiple pairs of projection units (DBPN-MR) utilizes mul-
tiple up- and down-projection units as shown in Fig. 7. However,
instead of taking the output from each up-projection unit, DBPN-
MR takes the HR features only from the last up-projection unit,
then, concatenate the HR features from each iteration. Here, the
output from the last down-projection unit is the input for the
next iteration. Then, the last up-projection unit will receive the
output of all previous down-projection units on the corresponding
iteration.

4.3 Residual DBPN
Residual learning helps the network to converge faster and make
the network have an easier job to produce only the difference
between HR and interpolated LR image. Initially, residual learning

5

Fig. 6. Recurrent DBPN with single pair of projection unit (DBPN-R).

Fig. 7. Recurrent DBPN with multiple pairs of projection units (DBPN-
MR).

has been applied in SR by VDSR [12]. Residual DBPN takes LR
image as an input to reduce the computational time. First, LR
image is interpolated using Bicubic interpolation; then, at the last
stage, the interpolated image is added to the reconstructed image
to produce final SR image.

5 EXPERIMENTAL RESULTS

5.1 Implementation and training details
In the proposed networks, the filter size in the projection unit is
various with respect to the scaling factor. For 2×, we use 6 × 6
kernel with stride = 2 and pad by 2 pixels. Then, 4× use 8 × 8
kernel with stride = 4 and pad by 2 pixels. Finally, the 8× use
12× 12 kernel with stride = 8 and pad by 2.1

We initialize the weights based on [46]. Here, standard de-
viation (std) is computed by (

√
2/nl) where nl = f2t nt, ft is

the filter size, and nt is the number of filters. For example, with
ft = 3 and nt = 8, the std is 0.111. All convolutional and
deconvolutional layers are followed by parametric rectified linear
units (PReLUs), except the final reconstruction layer.

We trained all networks using images from DIV2K [47] with
augmentation (scaling, rotating, flipping, and random cropping).
To produce LR images, we downscale the HR images on particular
scaling factors using Bicubic. We use batch size of 16 with size
40 × 40 for LR image, while HR image size corresponds to the
scaling factors. The learning rate is initialized to 1e − 4 for all
layers and decrease by a factor of 10 for every 5× 105 iterations
for total 106 iterations. We used Adam with momentum to 0.9
and trained with L1 Loss. All experiments were conducted using
PyTorch 0.3.1 and Python 3.5 on NVIDIA TITAN X GPUs. The
code is available in the internet.2

5.2 Model analysis
There are six types of DBPN used for model analysis: DBPN-SS,
DBPN-S, DBPN-M, DBPN-L, D-DBPN-L, D-DBPN, and DBPN.
The detailed architectures of those networks are shown in Table 1.

1. We found these settings to work well based on general intuition and
preliminary experiments.

2. The implementation is available here.

Fig. 8. The depth analysis of DBPNs compare to other networks
(VDSR [12], DRCN [19], DRRN [14], LapSRN [13]) on Set5 dataset for
4× enlargement.

Depth analysis. To demonstrate the capability of our projection
unit, we construct multiple networks: DBPN-S (T = 2), DBPN-
M (T = 4), and DBPN-L (T = 6). In the feature extraction, we
use n0 = 128 and nR = 32. Then, we use conv(1, 1) for the
reconstruction. The input and output image are luminance only.

The results on 4× enlargement are shown in Fig. 8. DBPN out-
performs the state-of-the-art methods. Starting from our shallow
network, DBPN-S gives the higher PSNR than VDSR, DRCN,
and LapSRN. DBPN-S uses only 12 convolutional layers with
smaller number of filters than VDSR, DRCN, and LapSRN. At
the best performance, DBPN-S can achieve 31.59 dB which
better 0.24 dB, 0.06 dB, 0.05 dB than VDSR, DRCN, and
LapSRN, respectively. DBPN-M shows performance improvement
which better than all four existing state-of-the-art methods (VDSR,
DRCN, LapSRN, and DRRN). At the best performance, DBPN-M
can achieve 31.74 dB which better 0.39 dB, 0.21 dB, 0.20 dB,
0.06 dB than VDSR, DRCN, LapSRN, and DRRN respectively. In
total, DBPN-M uses 24 convolutional layers which has the same
depth as LapSRN. Compare to DRRN (up to 52 convolutional
layers), DBPN-M undeniable shows the effectiveness of our pro-
jection unit. Finally, DBPN-L outperforms all methods with 31.86
dB which better 0.51 dB, 0.33 dB, 0.32 dB, 0.18 dB than VDSR,
DRCN, LapSRN, and DRRN, respectively.

The results of 8× enlargement are shown in Fig. 9. Our net-
works outperform the current state-of-the-art for 8× enlargement
which clearly show the effectiveness of our proposed networks on
large scaling factors. However, we found that there is no significant
performance gain from each proposed network especially for
DBPN-L and DBPN-M networks where the difference only 0.04
dB.
Number of parameters. We show the tradeoff between perfor-
mance and number of network parameters from our networks and
existing deep network SR in Fig. 10 and 11.

For the sake of low computation for real-time processing,
we construct DBPN-SS which is the lighter version of DBPN-
S, (T = 2). We use n0 = 64 and nR = 18. However, the
results outperform SRCNN, FSRCNN, and VDSR on both 4× and
8× enlargement. Moreover, DBPN-SS performs better than VDSR
with 72% and 37% fewer parameters on 4× and 8× enlargement,
respectively.

DBPN-S has about 27% fewer parameters and higher PSNR
than LapSRN on 4× enlargement. Finally, D-DBPN has about
76% fewer parameters, and approximately the same PSNR, com-

https://www.toyota-ti.ac.jp/Lab/Denshi/iim/members/muhammad.haris/projects/DBPN.html

6

TABLE 1
Model architecture of DBPN. ”Feat0” and ”Feat1” refer to first and second convolutional layer in the initial feature extraction stages. Note:

conv(f, n, st, pd) where f is filter size, n is number of filters, st is striding, and pd is padding

Scale DBPN-SS DBPN-S DBPN-M DBPN-L D-DBPN-L D-DBPN DBPN

Input/Output Luminance Luminance Luminance Luminance Luminance RGB RGB

Feat0 conv(3,64,1,1) conv(3,128,1,1) conv(3,128,1,1) conv(3,128,1,1) conv(3,128,1,1) conv(3,256,1,1) conv(3,256,1,1)

Feat1 conv(1,18,1,0) conv(1,32,1,0) conv(1,32,1,0) conv(1,32,1,0) conv(1,32,1,0) conv(1,64,1,0) conv(1,64,1,0)

Reconstruction conv(1,1,1,0) conv(1,1,1,0) conv(1,1,1,0) conv(1,1,1,0) conv(1,1,1,0) conv(3,3,1,1) conv(3,3,1,1)

2× conv(6,18,2,2) conv(6,32,2,2) conv(6,32,2,2) conv(6,32,2,2) conv(6,32,2,2) conv(6,64,2,2) conv(6,64,2,2)

BP stages 4× conv(8,18,4,2) conv(8,32,4,2) conv(8,32,4,2) conv(8,32,4,2) conv(8,32,4,2) conv(8,64,4,2) conv(8,64,4,2)

8× conv(12,18,8,2) conv(12,32,8,2) conv(12,32,8,2) conv(12,32,8,2) conv(12,32,8,2) conv(12,64,8,2) conv(12,64,8,2)

2× 106 337 779 1221 1230 5819 8811

Parameters (k) 4× 188 595 1381 2168 2176 10426 15348

8× 421 1332 3101 4871 4879 23205 34026

Depth 12 12 24 36 40 52 76

No. of stage (T) 2 2 4 6 6 7 10

Dense connection No No No No Yes Yes Yes

Fig. 9. The depth analysis of DBPN on Set5 dataset for 8× enlargement.
DBPN-S (T = 2), DBPN-M (T = 4), and DBPN-L (T = 6)

pared to EDSR on 4× enlargement. On the 8× enlargement,
D-DBPN has about 47% fewer parameters with better PSNR
compare to EDSR. This evidence show that our networks has the
best trade-off between performance and number of parameter.
Deep concatenation. Each projection unit is used to distribute
the reconstruction step by constructing features which represent
different details of the HR components. Deep concatenation is
also well-related with the number of T (back-projection stage),
which shows more detailed features generated from the projection
units will also increase the quality of the results. In Fig. 12, it is
shown that each stage successfully generates diverse features to
reconstruct SR image.
Error Feedback. As stated before, error feedback (EF) is used to
guide the reconstruction in the early layer. Here, we analyze how
error feedback can help for better reconstruction. We conduct ex-
periments to see the effectiveness of error feedback procedure. On
the scenario without EF, we replace up- and down-projection unit
with single up- (deconvolution) and down-sampling (convolution)
layer.

We show PSNR of DBPN-S with EF and without EF in Ta-
ble 2. The result with EF has 0.53 dB and 0.26 dB better than
without EF on Set5 and Set14, respectively. In Fig. 13, we visually
show how error feedback can construct better and sharper HR
image especially in the white stripe pattern of the wing.

Moreover, the performance of DBPN-S without EF is interest-
ingly 0.57 dB and 0.35 dB better than previous approaches such as

Fig. 10. Performance vs number of parameters. The results are evalu-
ated with Set5 dataset for 4× enlargement.

Fig. 11. Performance vs number of parameters. The results are evalu-
ated with Set5 dataset for 8× enlargement.

SRCNN [16] and FSRCNN [17], respectively, on Set5. The results
show the effectiveness of iterative up- and downsampling layers
to demonstrate the LR-to-HR mutual dependency.
Filter Size We analyze the size of filters which is used in the
back-projection stage. As stated before, the choice of filter size in
the back-projection stage is based on the preliminary results. For
the 4× enlargement, we show that filter 8×8 is 0.08 dB and 0.09
dB better than filter 6×6 and 10×10, respectively, as shown in
Table 3.

7

Fig. 12. Sample of feature maps from up-projection units in D-DBPN
where t = 7. Each feature has been enhanced using the same grayscale
colormap. Zoom in for better visibility.

TABLE 2
Analysis of EF using DBPN-S on 4× enlargement. Red indicates the

best performance.

Set5 Set14
SRCNN [16] 30.49 27.61

FSRCNN [17] 30.71 27.70

Without EF 31.06 27.95

With EF 31.59 28.21

Fig. 13. Qualitative comparisons of DBPN-S with EF and without EF on
4× enlargement.

TABLE 3
Analysis of filter size in the back-projection stages on 4× enlargement

from D-DBPN. Red indicates the best performance.

Filter size Striding Padding Set5 Set14
6 4 1 32.39 28.78

8 4 2 32.47 28.82

10 4 3 32.38 28.79

TABLE 4
Analysis of input/output color channel using DBPN-L. Red indicates the

best performance.

Set5 Set14
RGB 31.88 28.47

Luminance 31.86 28.47

Luminance vs RGB In D-DBPN, we change the input/output
from luminance to RGB color channels. There is no significant
improvement in the quality of the result as shown in Table 4.
However, for running time efficiency, constructing all channels
simultaneously is faster than a separated process.

5.3 Comparison of each DBPN variant
Dense connection. We implement D-DBPN-L which is a dense
connection of the L network to show how dense connection
can improve the network’s performance in all cases as shown
in Table 5. On 4× enlargement, the dense network, D-DBPN-

TABLE 5
Comparison of the DBPN-L and D-DBPN-L on 4× and 8×

enlargement. Red indicates the best performance.

Set5 Set14
Algorithm Scale PSNR SSIM PSNR SSIM
DBPN-L 4 31.86 0.891 28.47 0.777
D-DBPN-L 4 31.99 0.893 28.52 0.778
DBPN-L 8 26.63 0.761 24.73 0.631
D-DBPN-L 8 26.86 0.773 24.92 0.638

L, gains 0.13 dB and 0.05 dB higher than DBPN-L on the Set5
and Set14, respectively. On 8×, the gaps are even larger. The D-
DBPN-L has 0.23 dB and 0.19 dB higher that DBPN-L on the
Set5 and Set14, respectively.
Comparison across the variants. We compare six DBPN vari-
ants: DBPN-R64-10, DBPN-R128-5, DBPN-MR64-3, DBPN-
RES-MR64-3, DBPN-RES, and DBPN. First, DBPN, which
was the winner of NTIRE2018 [27] and PIRM2018 [28], uses
n0 = 256, nR = 64, and t = 10 for the back-projection stages,
and dense connection between projection units. In the reconstruc-
tion, we use conv(3, 3). DBPN-R64-10 uses nR = 64 with 10
iterations to produce 640 HR features as input of reconstruction
layer. DBPN-R128-5, uses nR = 128 with 5 iterations, produces
640 HR features. DBPN-MR64-3 has the same architecture with
D-DBPN but the projection units are treated as recurrent network.
DBPN-RES-MR64-3 is DBPN-MR64-3 with residual learning.
Last, DBPN-RES is DBPN with residual learning. All variants
are trained with the same training setup.

The results are shown in Table 6. It shows that all variants
successfully have better performance than D-DBPN [26]. DBPN-
R64-10 has the least parameter compare to other variants, which
is suitable for mobile/real-time application. It can reduce 10×
number of parameter compare to DBPN and maintain to get
good performance. We can see that increasing nR can improve
the performance of DBPN-R which is shown by DBPN-R128-5
compare to DBPN-R64-10. However, better results is obtained by
DBPN-MR64-3, especially on Urban100 and Manga109 test set
compare to other variants. It is also proven that residual learning
can slightly improve the performance of DBPN. Therefore, it
is natural that we performed the combination of multiple stages
recurrent and residual learning called DBPN-RES-MR64-3 which
performs the best results and has lower parameter than DBPN.

5.4 Comparison with the-state-of-the-arts on SR

To confirm the ability of the proposed network, we performed
several experiments and analysis. We compare our network with
ten state-of-the-art SR algorithms: A+ [48], SRCNN [16], FSR-
CNN [17], VDSR [12], DRCN [19], DRRN [14], LapSRN [13],
D-DBPN [26], EDSR [25], and RCAN [15]. We carry out
extensive experiments using 5 datasets: Set5 [49], Set14 [50],
BSDS100 [51], Urban100 [52] and Manga109 [53]. Each dataset
has different characteristics. Set5, Set14 and BSDS100 consist of
natural scenes; Urban100 contains urban scenes with details in
different frequency bands; and Manga109 is a dataset of Japanese
manga.

Our final network, DBPN-RES-MR64-3, combines dense con-
nection, recurrent network and residual learning to boost the
performance of DBPN. It uses n0 = 256, nR = 64, and t = 7
with 3 iteration. In the reconstruction, we use conv(3, 3). RGB

8

TABLE 6
Quantitative evaluation of DBPN’s variants on 4×. Red indicates the best performance.

Set5 Set14 BSDS100 Urban100 Manga109
Method # Parameters (k) PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
D-DBPN [26] 10426 32.40 0.897 28.75 0.785 27.67 0.738 26.38 0.793 30.89 0.913
DBPN 15348 32.55 0.898 28.91 0.789 27.77 0.742 26.82 0.807 31.46 0.918
DBPN-R64-10 1614 32.38 0.896 28.83 0.787 27.73 0.740 26.51 0.798 31.12 0.915
DBPN-R128-5 6349 32.41 0.897 28.83 0.787 27.72 0.740 26.58 0.799 31.15 0.915
DBPN-MR64-3 10419 32.57 0.898 28.92 0.790 27.79 0.743 26.92 0.810 31.51 0.919
DBPN-RES 15348 32.54 0.897 28.92 0.789 27.79 0.742 26.89 0.808 31.49 0.918
DBPN-RES-MR64-3 10419 32.65 0.899 29.03 0.791 27.82 0.744 27.08 0.814 31.74 0.921

Fig. 14. Qualitative comparison of our models with other works on 4× super-resolution.

color channels are used for input and output image. It takes around
than 14 days to train.

PSNR and structural similarity (SSIM) [54] were used to
quantitatively evaluate the proposed method. Note that higher
PSNR and SSIM values indicate better quality. As used by existing
networks, all measurements used only the luminance channel (Y).
For SR by factor s, we crop s pixels near image boundary before
evaluation as in [17], [25]. Some of the existing networks such
as SRCNN, FSRCNN, VDSR, and EDSR did not perform 8×
enlargement. To this end, we retrained the existing networks by
using author’s code with the recommended parameters.

Figure 14 shows that EDSR tends to generate stronger edge
than the ground truth and lead to misleading information in several
cases. The result of EDSR shows the eyelashes were interpreted
as a stripe pattern. Our result generates softer patterns which is
subjectively closer to the ground truth. On the butterfly image,
EDSR separates the white pattern and tends to construct regular
pattern such ac circle and stripe, while D-DBPN constructs the
same pattern as the ground truth.

We show the quantitative results in the Table 7. Our network
outperforms the existing methods by a large margin in all scales
except RCAN. For 4×, EDSR has 0.26 dB higher than D-DBPN
but outperformed by DBPN-RES-MR64-3 with 0.44 dB margin
on Urban100. Recent state-of-the-art, RCAN [15], performs better
results than our network on 2×. However, on 4×, our network
has 0.26 dB higher than RCAN on Urban100. The biggest gap
is shown on Manga109, our network has 0.52 dB higher than
RCAN.

Our network shows its effectiveness on 8× enlargement which
outperforms all of the existing methods by a large margin. Inter-

esting results are shown on Manga109 dataset where D-DBPN
obtains 25.50 dB which is 0.61 dB better than EDSR. While
on the Urban100 dataset, D-DBPN achieves 23.25 which is only
0.13 dB better than EDSR. Our final network, DBPN-RES-MR64-
3, outperforms all previous networks. DBPN-RES-MR64-3 is
roughly 0.2 dB better than RCAN [15] across multiple dataset.
The biggest gap is on Manga109 where DBPN-RES-MR64-3 is
0.47 dB better than RCAN [15]. The overall results show that
our networks perform better on fine-structures images especially
manga characters, even though we do not use any animation
images in the training.

The results of 8× enlargement are visually shown in Fig. 15.
Qualitatively, our network is able to preserve the HR components
better than other networks. For image “img 040.png”, all of
previous methods fail to recover the correct direction of the
image textures, while ours produce more faithful results to the
ground truth. For image “Hamlet 2.png”, other methods suffer
from heavy blurring artifacts and fail to recover the details. While,
our network successfully recovers the fined detail and produce the
closest result to the ground truth. It shows that our networks can
successfully extract not only features but also create contextual
information from the LR input to generate HR components in the
case of large scaling factors, such as 8× enlargement.

5.5 Runtime Evaluation
We present the runtime comparisons between our networks
and 3 state-of-the-art networks: VDSR [12], DRRN [14], and
EDSR [25]. The comparison must be done in fair settings. The
runtime is calculated using python function timeit which en-
capsulating only forward function. For EDSR, we use original

9

Fig. 15. Qualitative comparison of our models with other works on 8× super-resolution.

10

TABLE 7
Quantitative evaluation of state-of-the-art SR algorithms: average PSNR/SSIM for scale factors 2×, 4×, and 8×. Red indicates the best and blue

indicates the second best performance.

Set5 Set14 BSDS100 Urban100 Manga109
Method Scale PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Bicubic 2 33.65 0.930 30.34 0.870 29.56 0.844 26.88 0.841 30.84 0.935
A+ [48] 2 36.54 0.954 32.40 0.906 31.22 0.887 29.23 0.894 35.33 0.967
SRCNN [16] 2 36.65 0.954 32.29 0.903 31.36 0.888 29.52 0.895 35.72 0.968
FSRCNN [17] 2 36.99 0.955 32.73 0.909 31.51 0.891 29.87 0.901 36.62 0.971
VDSR [12] 2 37.53 0.958 32.97 0.913 31.90 0.896 30.77 0.914 37.16 0.974
DRCN [19] 2 37.63 0.959 32.98 0.913 31.85 0.894 30.76 0.913 37.57 0.973
DRRN [14] 2 37.74 0.959 33.23 0.913 32.05 0.897 31.23 0.919 37.92 0.976
LapSRN [13] 2 37.52 0.959 33.08 0.913 31.80 0.895 30.41 0.910 37.27 0.974
D-DBPN [26] 2 38.05 0.960 33.79 0.919 32.25 0.900 32.51 0.932 38.81 0.976
EDSR [25] 2 38.11 0.960 33.92 0.919 32.32 0.901 32.93 0.935 39.10 0.977
RCAN [15] 2 38.27 0.961 34.12 0.921 32.41 0.903 33.34 0.938 39.44 0.979
DBPN-RES-MR64-3 2 38.08 0.960 34.09 0.921 32.31 0.901 32.92 0.935 39.28 0.977
Bicubic 4 28.42 0.810 26.10 0.704 25.96 0.669 23.15 0.659 24.92 0.789
A+ [48] 4 30.30 0.859 27.43 0.752 26.82 0.710 24.34 0.720 27.02 0.850
SRCNN [16] 4 30.49 0.862 27.61 0.754 26.91 0.712 24.53 0.724 27.66 0.858
FSRCNN [17] 4 30.71 0.865 27.70 0.756 26.97 0.714 24.61 0.727 27.89 0.859
VDSR [12] 4 31.35 0.882 28.03 0.770 27.29 0.726 25.18 0.753 28.82 0.886
DRCN [19] 4 31.53 0.884 28.04 0.770 27.24 0.724 25.14 0.752 28.97 0.886
DRRN [14] 4 31.68 0.888 28.21 0.772 27.38 0.728 25.44 0.764 29.46 0.896
LapSRN [13] 4 31.54 0.885 28.19 0.772 27.32 0.728 25.21 0.756 29.09 0.890
D-DBPN [26] 4 32.40 0.897 28.75 0.785 27.67 0.738 26.38 0.793 30.89 0.913
EDSR [25] 4 32.46 0.897 28.80 0.788 27.71 0.742 26.64 0.803 31.02 0.915
RCAN [15] 4 32.63 0.900 28.87 0.789 27.77 0.744 26.82 0.809 31.22 0.917
DBPN-RES-MR64-3 4 32.65 0.899 29.03 0.791 27.82 0.744 27.08 0.814 31.74 0.921
Bicubic 8 24.39 0.657 23.19 0.568 23.67 0.547 20.74 0.516 21.47 0.647
A+ [48] 8 25.52 0.692 23.98 0.597 24.20 0.568 21.37 0.545 22.39 0.680
SRCNN [16] 8 25.33 0.689 23.85 0.593 24.13 0.565 21.29 0.543 22.37 0.682
FSRCNN [17] 8 25.41 0.682 23.93 0.592 24.21 0.567 21.32 0.537 22.39 0.672
VDSR [12] 8 25.72 0.711 24.21 0.609 24.37 0.576 21.54 0.560 22.83 0.707
LapSRN [13] 8 26.14 0.738 24.44 0.623 24.54 0.586 21.81 0.582 23.39 0.735
D-DBPN [26] 8 27.25 0.785 25.14 0.649 24.91 0.602 22.72 0.630 25.14 0.798
EDSR [25] 8 26.97 0.775 24.94 0.640 24.80 0.596 22.47 0.620 24.58 0.778
RCAN [15] 8 27.31 0.787 25.23 0.651 24.98 0.606 23.00 0.645 25.24 0.803
DBPN-RES-MR64-3 8 27.51 0.793 25.41 0.657 25.05 0.607 23.20 0.652 25.71 0.813

author code based on Torch and use timer function to obtain the
runtime.

We evaluate each network using NVIDIA TITAN X GPU (12G
Memory). The input image size is 64× 64, then upscaled into
128× 128 (2×), 256× 256 (4×), and 512× 512 (8×). The results
are the average of 10 times trials.

Table 8 shows the runtime comparisons on 2×, 4×, and 8×
enlargement. It shows that DBPN-SS and DBPN-S obtain the best
and second best performance on 4× and 8× enlargement. On 2×
enlargement, we did not train the variants of our proposed network
except for D-DBPN. Therefore, we cannot produce the runtime for
DBPN-SS, DBPN-S, DBPN-M, and DBPN-L networks. Compare
to EDSR, D-DBPN shows its effectiveness by having faster
runtime with comparable quality on 2× and 4× enlargement. On
8× enlargement, the gap is bigger. It shows that D-DBPN has
better results with lower runtime than EDSR.

Noted that input for VDSR and DRRN is only luminance
channel and need preprocessing to create middle-resolution image.
So that, the runtime should be added by additional computation of
interpolation computation on preprocessing.

6 PERCEPTUALLY OPTIMIZED DBPN
We also can extend DBPN to produce HR outputs that appear
to be better under human perception. Despite many attempts,
it remains unclear how to accurately model perceptual quality.
Instead, we incorporate the perceptual quality into the generator
by using adversarial loss, as introduced elsewhere [38], [39]. In
the adversarial settings, there are two building blocks: a generator
(G) and a discriminator (D). In the context of SR, the generator
G produces HR images (from LR inputs). The discriminator D

TABLE 8
Runtime evaluation with input size 64×64. Red indicates the best and
blue indicates the second best performance, * indicates the calculation
using function timer in Torch, and N.A. indicates that the algorithm runs

out of GPU memory.

2× 4× 8×
(128×128) (256×256) (512×512)

VDSR [12] 0.02223 0.03225 0.06856

DRRN [14] 0.25413 0.32893 N.A.

*EDSR [25] 0.8579 1.2458 1.1477

DBPN-SS - 0.01672 0.02692

DBPN-S - 0.02073 0.03812

DBPN-M - 0.04511 0.08106

DBPN-L - 0.06971 0.12635

D-DBPN 0.15331 0.19396 0.31851

works to differentiate between real HR images and generated HR
images (the product of SR network G). In our experiments, the
generator is a DBPN network, and the discriminator is a network
with five hidden layers with batch norm, followed by the last, fully
connected layer.

The generator loss in this experiment is composed of four loss
terms, following [39]: MSE, VGG, Style, and Adversarial loss.

LG = w1 ∗Lmse +w2 ∗Lvgg +w3 ∗Ladv +w4 ∗Lstyle (11)

• MSE loss is pixel-wise loss which calculated in the image
space Lmse = ||Ih − Isr||22.

11

• VGG loss is calculated in the feature space using pretrained
VGG19 network [40] on multiple layers. This loss was origi-
nally proposed by [8], [55]. Both Ih and Isr are first mapped
into a feature space by differentiable functions fi from VGG
multiple max-pool layers (i = 2, 3, 4, 5) then sum up each

layer distances. Lvgg =
5∑

i=2
||fi(Ih)− fi(Isr)||22.

• Adversarial loss. Ladv = −log(D(G(I l))), where D(x) is
the probability assigned by D to x being a real HR image.

• Style loss is used to generate high quality textures. This
loss was originally proposed by [56]. Style loss using the
same differentiable function f as in VGG loss. Lstyle =
5∑

i=2
||θ(fi(Ih))− θ(fi(Isr))||22 where Gram matrix θ(F) =

FFT ∈ Rn×n.
The training objective for D is

LD = −log(D(Ih))− log(1−D(G(I l))).

As is common in training adversarial networks, we alternate
between stages of training G and training D. We use pre-trained
DBPN model which optimized by MSE loss only, then fine-tuned
with the perceptual loss. We use batch size of 4 with size 60× 60
for LR image, while HR image size is 240 × 240. The learning
rate is initialized to 1e−4 for all layers for 2×105 iteration using
Adam with momentum to 0.9.

This method was inclded in the challenge associated with
PIRM2018 [28], in conjunction with ECCV 2018. In the chal-
lenge, evaluation was conducted in three disjoint regimes defined
by thresholds on the RMSE; the intuition behind this is the
natural tradeoff between RMSE and perceptual quality of the
reconstruction. The latter is measured by combining the quality
measures of Ma [57] and NIQE [58] as below,

Perceptual index = 1/2((10−Ma) +NIQE). (12)

The three regimes correspond to Region 1: RMSE ≤ 11.5 ,
Region 2: 11.5 < RMSE ≤ 12.5, and Region 3: 12.5 < RMSE
≤ 16. We select optimal parameter settings for each regime. This
process yields
• Region 1 (w1 : 0.5, w2 : 0.05, w3 : 0.001, w4 : 1)
• Region 2 (w1 : 0.1, w2 : 0.2, w3 : 0.001, w4 : 1)
• Region 3 (w1 : 0.03, w2 : 0.2, w3 : 0.001, w4 : 10)
Our method achieved 1st place on Region 2, 3rd place on

Region 1, and 5th place on Region 3 [28]. In Region 3, it shows
very competitive results where we got 5th, however, it is noted that
our method has the lowest RMSE among other top 5 performers
which means the image has less distortion or hallucination w.r.t
the original image.

We show qualitative results from our method which is shown
in Fig. 16. It can be seen that there are significant improvement
on high quality texture on each region compare to MSE-optimized
SR image.

7 CONCLUSION

We have proposed Deep Back-Projection Networks for Single
Image Super-resolution which is the winner of two single image
SR challenge (NTIRE2018 and PIRM2018). Unlike the previous
methods which predict the SR image in a feed-forward manner,
our proposed networks focus to directly increase the SR features
using multiple up- and down-sampling stages and feed the error

predictions on each depth in the networks to revise the sampling
results, then, accumulates the self-correcting features from each
upsampling stage to create SR image. We use error feedbacks from
the up- and down-scaling steps to guide the network to achieve a
better result. The results show the effectiveness of the proposed
network compares to other state-of-the-art methods. Moreover, our
proposed network successfully outperforms other state-of-the-art
methods on large scaling factors such as 8× enlargement. We also
show that DBPN can be modified into several variants to follow
the latest deep learning trends to improve its performance.

ACKNOWLEDGMENTS

This work was partly supported by FCRAL, and by AFOSR
Center of Excellence in Efficient and Robust Machine Learning,
Award FA9550-18-1-0166.

REFERENCES

[1] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2017.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” arXiv preprint arXiv:1512.03385, 2015.

[3] E. L. Denton, S. Chintala, R. Fergus et al., “Deep generative image
models using a laplacian pyramid of adversarial networks,” in Advances
in neural information processing systems, 2015, pp. 1486–1494.

[4] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb,
“Learning from simulated and unsupervised images through adversarial
training,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017.

[5] G. Larsson, M. Maire, and G. Shakhnarovich, “Fractalnet: Ultra-deep
neural networks without residuals,” arXiv preprint arXiv:1605.07648,
2016.

[6] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[7] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox,
“Flownet 2.0: Evolution of optical flow estimation with deep networks,”
in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Jul 2017.

[8] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style
transfer and super-resolution,” in European Conference on Computer
Vision. Springer, 2016, pp. 694–711.

[9] X. Tao, H. Gao, R. Liao, J. Wang, and J. Jia, “Detail-revealing deep video
super-resolution,” in Proceedings of the IEEE International Conference
on Computer Vision, Venice, Italy, 2017, pp. 22–29.

[10] M. S. Sajjadi, R. Vemulapalli, and M. Brown, “Frame-recurrent video
super-resolution,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 6626–6634.

[11] M. Haris, M. R. Widyanto, and H. Nobuhara, “Inception learning super-
resolution,” Appl. Opt., vol. 56, no. 22, pp. 6043–6048, Aug 2017.

[12] J. Kim, J. Kwon Lee, and K. Mu Lee, “Accurate image super-resolution
using very deep convolutional networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, June 2016, pp.
1646–1654.

[13] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Deep laplacian pyra-
mid networks for fast and accurate super-resolution,” in IEEE Conferene
on Computer Vision and Pattern Recognition, 2017.

[14] Y. Tai, J. Yang, and X. Liu, “Image super-resolution via deep recursive
residual network,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017.

[15] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image super-
resolution using very deep residual channel attention networks,” in
Proceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 286–301.

[16] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE transactions on pattern analysis and
machine intelligence, vol. 38, no. 2, pp. 295–307, 2016.

[17] C. Dong, C. C. Loy, and X. Tang, “Accelerating the super-resolution
convolutional neural network,” in European Conference on Computer
Vision. Springer, 2016, pp. 391–407.

12

Fig. 16. Results of DBPN with perceptual loss.

[18] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop,
D. Rueckert, and Z. Wang, “Real-time single image and video super-
resolution using an efficient sub-pixel convolutional neural network,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 1874–1883.

[19] J. Kim, J. Kwon Lee, and K. Mu Lee, “Deeply-recursive convolutional
network for image super-resolution,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2016, pp. 1637–1645.

[20] D. J. Felleman and D. C. Van Essen, “Distributed hierarchical processing
in the primate cerebral cortex.” Cerebral cortex (New York, NY: 1991),
vol. 1, no. 1, pp. 1–47, 1991.

[21] D. J. Kravitz, K. S. Saleem, C. I. Baker, L. G. Ungerleider, and
M. Mishkin, “The ventral visual pathway: an expanded neural framework
for the processing of object quality,” Trends in cognitive sciences, vol. 17,
no. 1, pp. 26–49, 2013.

[22] V. A. Lamme and P. R. Roelfsema, “The distinct modes of vision offered
by feedforward and recurrent processing,” Trends in neurosciences,
vol. 23, no. 11, pp. 571–579, 2000.

[23] M. Irani and S. Peleg, “Improving resolution by image registration,”
CVGIP: Graphical models and image processing, vol. 53, no. 3, pp.
231–239, 1991.

[24] S. Dai, M. Han, Y. Wu, and Y. Gong, “Bilateral back-projection for
single image super resolution,” in Multimedia and Expo, 2007 IEEE
International Conference on. IEEE, 2007, pp. 1039–1042.

[25] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep residual
networks for single image super-resolution,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops, July 2017.

[26] M. Haris, G. Shakhnarovich, and N. Ukita, “Deep back-projection
networks for super-resolution,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018.

[27] R. Timofte, S. Gu, J. Wu, L. Van Gool, L. Zhang, M.-H. Yang, M. Haris,
G. Shakhnarovich, N. Ukita et al., “Ntire 2018 challenge on single image
super-resolution: Methods and results,” in Computer Vision and Pattern
Recognition Workshops (CVPRW), 2018 IEEE Conference on, 2018.

[28] Y. Blau, R. Mechrez, R. Timofte, T. Michaeli, and L. Zelnik-Manor,
“2018 pirm challenge on perceptual image super-resolution,” arXiv
preprint arXiv:1809.07517, 2018.

[29] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, “Residual dense net-
work for image super-resolution,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.

[30] J. Carreira, P. Agrawal, K. Fragkiadaki, and J. Malik, “Human pose
estimation with iterative error feedback,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
4733–4742.

[31] S. Ross, D. Munoz, M. Hebert, and J. A. Bagnell, “Learning message-
passing inference machines for structured prediction,” in Computer
Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on.
IEEE, 2011, pp. 2737–2744.

[32] Z. Tu and X. Bai, “Auto-context and its application to high-level vision
tasks and 3d brain image segmentation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 32, no. 10, pp. 1744–1757, 2010.

[33] K. Li, B. Hariharan, and J. Malik, “Iterative instance segmentation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 3659–3667.

[34] A. R. Zamir, T.-L. Wu, L. Sun, W. Shen, J. Malik, and S. Savarese,
“Feedback networks,” arXiv preprint arXiv:1612.09508, 2016.

[35] A. Shrivastava and A. Gupta, “Contextual priming and feedback for faster
r-cnn,” in European Conference on Computer Vision. Springer, 2016,
pp. 330–348.

[36] W. Lotter, G. Kreiman, and D. Cox, “Deep predictive coding net-
works for video prediction and unsupervised learning,” arXiv preprint
arXiv:1605.08104, 2016.

[37] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in neural information processing systems, 2014, pp. 2672–
2680.

[38] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-realistic single
image super-resolution using a generative adversarial network,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Jul
2017.

[39] M. S. Sajjadi, B. Schölkopf, and M. Hirsch, “Enhancenet: Single image
super-resolution through automated texture synthesis,” arXiv preprint
arXiv:1612.07919, 2016.

13

[40] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” ICLR, 2015.

[41] Y. Zhao, R.-G. Wang, W. Jia, W.-M. Wang, and W. Gao, “Iterative
projection reconstruction for fast and efficient image upsampling,” Neu-
rocomputing, vol. 226, pp. 200–211, 2017.

[42] M. Haris, M. R. Widyanto, and H. Nobuhara, “First-order derivative-
based super-resolution,” Signal, Image and Video Processing, vol. 11,
no. 1, pp. 1–8, 2017.

[43] W. Dong, L. Zhang, G. Shi, and X. Wu, “Nonlocal back-projection for
adaptive image enlargement,” in Image Processing (ICIP), 2009 16th
IEEE International Conference on. IEEE, 2009, pp. 349–352.

[44] R. Timofte, R. Rothe, and L. Van Gool, “Seven ways to improve
example-based single image super resolution,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 1865–1873.

[45] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 1–9.

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE International Conference on Computer Vision,
2015, pp. 1026–1034.

[47] E. Agustsson and R. Timofte, “Ntire 2017 challenge on single image
super-resolution: Dataset and study,” in The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops, July 2017.

[48] R. Timofte, V. De Smet, and L. Van Gool, “A+: Adjusted anchored
neighborhood regression for fast super-resolution,” in Asian Conference
on Computer Vision. Springer, 2014, pp. 111–126.

[49] M. Bevilacqua, A. Roumy, C. Guillemot, and M.-L. A. Morel, “Low-
complexity single-image super-resolution based on nonnegative neighbor
embedding,” in British Machine Vision Conference (BMVC), 2012.

[50] R. Zeyde, M. Elad, and M. Protter, “On single image scale-up using
sparse-representations,” in Curves and Surfaces. Springer, 2012, pp.
711–730.

[51] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and
hierarchical image segmentation,” IEEE transactions on pattern analysis
and machine intelligence, vol. 33, no. 5, pp. 898–916, 2011.

[52] J.-B. Huang, A. Singh, and N. Ahuja, “Single image super-resolution
from transformed self-exemplars,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2015, pp. 5197–5206.

[53] Y. Matsui, K. Ito, Y. Aramaki, A. Fujimoto, T. Ogawa, T. Yamasaki,
and K. Aizawa, “Sketch-based manga retrieval using manga109 dataset,”
Multimedia Tools and Applications, pp. 1–28, 2016.

[54] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” Image
Processing, IEEE Transactions on, vol. 13, no. 4, pp. 600–612, 2004.

[55] A. Dosovitskiy and T. Brox, “Generating images with perceptual similar-
ity metrics based on deep networks,” in Advances in Neural Information
Processing Systems, 2016, pp. 658–666.

[56] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using
convolutional neural networks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2016, pp. 2414–2423.

[57] C. Ma, C.-Y. Yang, X. Yang, and M.-H. Yang, “Learning a no-reference
quality metric for single-image super-resolution,” Computer Vision and
Image Understanding, vol. 158, pp. 1–16, 2017.

[58] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a” completely
blind” image quality analyzer.” IEEE Signal Process. Lett., vol. 20, no. 3,
pp. 209–212, 2013.

Muhammad Haris Muhammad Haris received
S. Kom (Bachelor of Computer Science) from
the Faculty of Computer Science, University of
Indonesia, Depok, Indonesia, in 2009. Then,
he received the M. Eng and Dr. Eng degree
from Department of Intelligent Interaction Tech-
nologies, University of Tsukuba, Japan, in 2014
and 2017, respectively, under the supervision of
Dr. Hajime Nobuhara. Currently, he is working
as postdoctoral fellow in Intelligent Information
Media Laboratory, Toyota Technological Institute

with Prof. Norimichi Ukita. His main research interests are low-level
vision and image/video processing.

Greg Shakhnarovich Greg Shakhnarovich has
been faculty member at TTI-Chicago since 2008.
He received his BSc degree in Computer Sci-
ence and Mathematics from the Hebrew Univer-
sity in Jerusalem, Israel, in 1994, and a MSc
degree in Computer Science from the Technion,
Israel, in 2000. Prior to joining TTIC Greg was
a Postdoctoral Research Associate at Brown
University, collaborating with researchers at the
Computer Science Department and the Brain
Sciences program there. Greg’s research inter-

ests lie broadly in computer vision and machine learning.

Norimichi Ukita Norimichi Ukita is a professor at
the graduate school of engineering, Toyota Tech-
nological Institute, Japan (TTI-J). He received
the B.E. and M.E. degrees in information en-
gineering from Okayama University, Japan, in
1996 and 1998, respectively, and the Ph.D de-
gree in Informatics from Kyoto University, Japan,
in 2001. After working for five years as an assis-
tant professor at NAIST, he became an associate
professor in 2007 and moved to TTIJ in 2016. He
was a research scientist of Precursory Research

for Embryonic Science and Technology, Japan Science and Technology
Agency (JST), during 2002 - 2006. He was a visiting research scientist at
Carnegie Mellon University during 2007-2009. He currently works also
at the Cybermedia center of Osaka University as a guest professor.
His main research interests are object detection/tracking and human
pose/shape estimation. He is a member of the IEEE.

	Introduction
	Related Work
	Image super-resolution using deep networks
	Feedback networks
	Adversarial training
	Back-projection

	Deep Back-Projection Networks
	Projection units
	Network architecture

	The Variants of DBPN
	Dense projection units
	Recurrent DBPN
	Residual DBPN

	Experimental Results
	Implementation and training details
	Model analysis
	Comparison of each DBPN variant
	Comparison with the-state-of-the-arts on SR
	Runtime Evaluation

	Perceptually optimized DBPN
	Conclusion
	References
	Biographies
	Muhammad Haris
	Greg Shakhnarovich
	Norimichi Ukita

